Advertisements
Advertisements
Question
Solve the following linear programming problems by graphical method.
Maximize Z = 20x1 + 30x2 subject to constraints 3x1 + 3x2 ≤ 36; 5x1 + 2x2 ≤ 50; 2x1 + 6x2 ≤ 60 and x1, x2 ≥ 0.
Solution
Given that 3x1 + 3x2 ≤ 36
Let 3x1 + 3x2 = 36
x1 | 0 | 12 |
x2 | 12 | 0 |
Also given that 5x1 + 2x2 ≤ 50
Let 5x1 + 2x2 = 50
x1 | 0 | 10 |
x2 | 25 | 0 |
3x1 + 3x2 = 36
x1 + x2 = 12 ……….(1)
5x1 + 2x2 = 50 ………(2)
2x1 + 2x2 = 24 ....[(1) × 2]
− − −
−3x1 = − 6
x1 = 2
Substituting x1 = 2 in (1) we get
2+ x2 = 12
x2 = 6
Also given that 2x1 + 6x2 ≤ 60
Let 2x1 + 6x2 = 60
x1 + 3x2 = 30
x1 | 0 | 30 |
x2 | 10 | 0 |
x1 + x2 = 12 …….(1)
x1 + 3x2 = 30 …….(2)
– 2x2 = – 18 ......[Equation (1) – (2)]
x2 = 9
x2 = 9 substitute in (1)
x1 + x2 = 12
x1 + 9 = 12
x1 = 12 – 9
x1 = 3
The feasible region satisfying all the given conditions is OABCD.
The co-ordinates of the comer points are
Corner points | Z = 20x1 + 30x2 |
O(0, 0) | 0 |
A(10, 0) | 200 |
B(2, 6) | 220 |
C(3, 9) | 330 |
D(0, 10) | 300 |
The maximum value of Z occurs at C(3, 9)
∴ The optimal solution is x1 = 3, x2 = 9 and Zmax = 330
APPEARS IN
RELATED QUESTIONS
A company manufactures two types of chemicals Aand B. Each chemical requires two types of raw material P and Q. The table below shows number of units of P and Q required to manufacture one unit of A and one unit of B and the total availability of P and Q.
Chemical→ | A | B | Availability |
Raw Material ↓ | |||
P | 3 | 2 | 120 |
Q | 2 | 5 | 160 |
The company gets profits of ₹ 350 and ₹ 400 by selling one unit of A and one unit of B respectively. (Assume that the entire production of A and B can be sold). How many units of the chemicals A and B should be manufactured so that the company gets a maximum profit? Formulate the problem as LPP to maximize profit.
Solution of LPP to minimize z = 2x + 3y, such that x ≥ 0, y ≥ 0, 1 ≤ x + 2y ≤ 10 is ______.
A company manufactures two types of chemicals A and B. Each chemical requires two types of raw material P and Q. The table below shows number of units of P and Q required to manufacture one unit of A and one unit of B.
Raw Material \Chemical | A | B | Availability |
p | 3 | 2 | 120 |
Q | 2 | 5 | 160 |
The company gets profits of ₹ 350 and ₹ 400 by selling one unit of A and one unit of B respectively. Formulate the problem as L.P.P. to maximize the profit.
Solve the following L.P.P. by graphical method:
Maximize: Z = 4x + 6y
Subject to 3x + 2y ≤ 12, x + y ≥ 4, x, y ≥ 0.
State whether the following is True or False :
The point (1, 2) is not a vertex of the feasible region bounded by 2x + 3y ≤ 6, 5x + 3y ≤ 15, x ≥ 0, y ≥ 0.
Choose the correct alternative:
Z = 9x + 13y subjected to constraints 2x + 3y ≤ 18, 2x + y ≤ 10, 0 ≤ x, y was found to be maximum at the point
State whether the following statement is True or False:
LPP is related to efficient use of limited resources
In the given graph the coordinates of M1 are
Solve the following LP.P.
Maximize z = 13x + 9y,
Subject to 3x + 2y ≤ 12,
x + y ≥ 4,
x ≥ 0,
y ≥ 0.
Solve the following LPP by graphical method:
Maximize: z = 3x + 5y Subject to: x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0