मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता ११

Solve the following linear programming problems by graphical method. Maximize Z = 20x1 + 30x2 subject to constraints 3x1 + 3x2 ≤ 36; 5x1 + 2x2 ≤ 50; 2x1 + 6x2 ≤ 60 and x1, x2 ≥ 0. - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following linear programming problems by graphical method.

Maximize Z = 20x1 + 30x2 subject to constraints 3x1 + 3x2 ≤ 36; 5x1 + 2x2 ≤ 50; 2x1 + 6x2 ≤ 60 and x1, x2 ≥ 0.

आलेख

उत्तर

Given that 3x1 + 3x2 ≤ 36

Let 3x1 + 3x2 = 36

x1 0 12
x2 12 0

Also given that 5x1 + 2x2 ≤ 50

Let 5x1 + 2x2 = 50

x1 0 10
x2 25 0

3x1 + 3x2 = 36

x1 + x2 = 12 ……….(1)

5x1 + 2x2 = 50 ………(2)

2x1 + 2x2 = 24 ....[(1) × 2]

−   −        −     
−3x1 = − 6

x1 = 2

Substituting x1 = 2 in (1) we get

2+ x2 = 12

x2 = 6

Also given that 2x1 + 6x2 ≤ 60

Let 2x1 + 6x2 = 60

x1 + 3x2 = 30

x1 0 30
x2 10 0

x1 + x2 = 12 …….(1)

x1 + 3x2 = 30 …….(2)
– 2x2 = – 18 ......[Equation (1) – (2)]

x2 = 9

x2 = 9 substitute in (1)

x1 + x2 = 12

x1 + 9 = 12

x1 = 12 – 9

x1 = 3

The feasible region satisfying all the given conditions is OABCD.

The co-ordinates of the comer points are

Corner points Z = 20x1 + 30x2
O(0, 0) 0
A(10, 0) 200
B(2, 6) 220
C(3, 9) 330
D(0, 10) 300

The maximum value of Z occurs at C(3, 9)

∴ The optimal solution is x1 = 3, x2 = 9 and Zmax = 330

shaalaa.com
Linear Programming Problem (L.P.P.)
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Operations Research - Exercise 10.1 [पृष्ठ २४४]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
पाठ 10 Operations Research
Exercise 10.1 | Q 4. (v) | पृष्ठ २४४

संबंधित प्रश्‍न

Select the appropriate alternatives for each of the following question:

The value of objective function is maximum under linear constraints


Solve the following LPP:

Maximize z =60x + 50y  subject to

x + 2y ≤ 40, 3x + 2y ≤ 60, x ≥ 0, y ≥ 0.


A printing company prints two types of magazines A and B. The company earns ₹ 10 and ₹ 15 on magazines A and B per copy. These are processed on three machines I, II, III. Magazine A requires 2 hours on Machine I, 5 hours on Machine II and 2 hours on Machine III. Magazine B requires 3 hours on Machine I, 2 hours on Machine II and 6 hours on Machine III. Machines I, II, III are available for 36, 50, 60 hours per week respectively. Formulate the Linear programming problem to maximize the profit.


A company manufactures two types of fertilizers F1 and F2. Each type of fertilizer requires two raw materials A and B. The number of units of A and B required to manufacture one unit of fertilizer F1 and F2 and availability of the raw materials A and B per day are given in the table below:

Raw Material\Fertilizers F1 F2 Availability
A 2 3 40
B 1 4 70

By selling one unit of F1 and one unit of F2, company gets a profit of ₹ 500 and ₹ 750 respectively. Formulate the problem as L.P.P. to maximize the profit.


State whether the following statement is True or False:

Objective function of LPP is a relation between the decision variables


In the given graph the coordinates of M1 are


Solve the following LP.P.

Maximize z = 13x + 9y,

Subject to 3x + 2y ≤ 12,

x + y ≥ 4,

x ≥ 0,

y ≥ 0.


Shamli wants to invest ₹ 50, 000 in saving certificates and PPF. She wants to invest atleast ₹ 15,000 in saving certificates and at least ₹ 20,000 in PPF. The rate of interest on saving certificates is 8% p.a. and that on PPF is 9% p.a. Formulation of the above problem as LPP to determine maximum yearly income, is ______.


Sketch the graph of the following inequation in XOY co-ordinate system.

x + y ≤ 0


Sketch the graph of the following inequation in XOY co-ordinate system.

2y - 5x ≥ 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.