Advertisements
Advertisements
प्रश्न
Minimize z = 6x + 2y, subject to x + 2y ≥ 3, x + 4y ≥ 4, 3x + y ≥ 3, x ≥ 0, y ≥ 0.
उत्तर
First we draw the lines AB, CD and EF whose equations are x + 2y = 3, x + 4y = 4 and 3x + y = 3 respectively.
Line | Equation | Points on the X-axis | Points on the Y-axis | Sign | Region |
AB | x + 2y = 3 | A(3, 0) | B`(0, 3/2)` | ≥ | non-origin side of line AB |
CD | x + 4y = 4 | C(4, 0) | D(0, 1) | ≥ | non-origin side of line CD |
EF | 3x + y = 3 | E(1, 0) | F(0, 3) | ≥ | non-origin side of line EF |
The feasible region is XCPQFY which is shaded in the graph.
The vertices of the feasible region are C(4, 0), P, Q and F (0, 3).
P is the point of intersection of the lines x + 4y = 4 and x + 2y = 3
On subtracting, we get
2y = 1
∴ y = `1/2`
Substituting y = `1/2` in x + 2y = 3, we get
x + 2`(1/2)` = 3
∴ x = 2
∴ P ≡ `(2, 1/2)`
Q is the point of intersection of the lines
x + 2y = 3 ....(1)
and 3x + y = 3 ...(2)
Multiplying equation (1) by 3, we get
3x + 6y = 9
Subtracting equation (2) from this equation, we get
5y = 6
∴ y =`6/5`
∴ from (1), x + 2`(6/5) = 3`
∴ x = `3 - 12/5 = 3/5`
∴ Q ≡ `(3/5,6/5)`
The values of the objective function z = 6x + 21y at these vertices are
z(C) = 6(4) + 21(0) = 24
z(P) = 6(2) + 21`(1/2)`
= 12 + 10.5 = 22.5
z (Q) = `6(3/5) + 21(6/5)`
`= 18/5 + 126/5 = 144/5 = 28.8`
z(F) = 6(0) + 21(3) = 63
∴ z has minimum value 22.5, when x = 2 and y = `1/2`.
APPEARS IN
संबंधित प्रश्न
Find the feasible solution of the following inequation:
3x + 2y ≤ 18, 2x + y ≤ 10, x ≥ 0, y ≥ 0
A company manufactures two types of fertilizers F1 and F2. Each type of fertilizer requires two raw materials A and B. The number of units of A and B required to manufacture one unit of fertilizer F1 and F2 and availability of the raw materials A and B per day are given in the table below:
Fertilizers→ | F1 | F2 | Availability |
Raw Material ↓ | |||
A | 2 | 3 | 40 |
B | 1 | 4 | 70 |
By selling one unit of F1 and one unit of F2, the company gets a profit of ₹ 500 and ₹ 750 respectively. Formulate the problem as LPP to maximize the profit.
If John drives a car at a speed of 60 km/hour, he has to spend ₹ 5 per km on petrol. If he drives at a faster speed of 90 km/hour, the cost of petrol increases ₹ 8 per km. He has ₹ 600 to spend on petrol and wishes to travel the maximum distance within an hour. Formulate the above problem as L.P.P.
Solve the following LPP by graphical method:
Maximize z = 11x + 8y, subject to x ≤ 4, y ≤ 6, x + y ≤ 6, x ≥ 0, y ≥ 0
Solve the following LPP by graphical method:
Maximize z = 7x + 11y, subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0.
Objective function of LPP is ______.
The point of which the maximum value of x + y subject to the constraints x + 2y ≤ 70, 2x + y ≤ 95, x, ≥ 0, y ≥ 0 is is obtained at ______.
Of all the points of the feasible region, the optimal value of z obtained at the point lies ______.
Solve the following LPP:
Maximize z = 6x + 10y subject to 3x + 5y ≤ 10, 5x + 3y ≤ 15, x ≥ 0, y ≥ 0.
Find graphical solution for the following system of linear in equation:
3x + 4y ≤ 12, x - 2y ≥ 2, y ≥ - 1
Solve the following LPP:
Maximize z =60x + 50y subject to
x + 2y ≤ 40, 3x + 2y ≤ 60, x ≥ 0, y ≥ 0.
Solve the following LPP:
Minimize z = 4x + 2y
Subject to 3x + y ≥ 27, x + y ≥ 21, x + 2y ≥ 30, x ≥ 0, y ≥ 0
A carpenter makes chairs and tables. Profits are ₹ 140 per chair and ₹ 210 per table. Both products are processed on three machines: Assembling, Finishing and Polishing. The time required for each product in hours and availability of each machine is given by the following table:
Product → | Chair (x) | Table (y) | Available time (hours) |
Machine ↓ | |||
Assembling | 3 | 3 | 36 |
Finishing | 5 | 2 | 50 |
Polishing | 2 | 6 | 60 |
Formulate the above problem as LPP. Solve it graphically
A manufacturing firm produces two types of gadgets A and B, which are first processed in the foundry and then sent to machine shop for finishing. The number of man hours of labour required in each shop for production of A and B and the number of man hours available for the firm are as follows:
Gadgets | Foundry | Machine Shop |
A | 10 | 5 |
B | 6 | 4 |
Time available (hours) | 60 | 35 |
Profit on the sale of A is ₹ 30 and B is ₹ 20 per unit. Formulate the L.P.P. to have maximum profit.
A company manufactures two types of fertilizers F1 and F2. Each type of fertilizer requires two raw materials A and B. The number of units of A and B required to manufacture one unit of fertilizer F1 and F2 and availability of the raw materials A and B per day are given in the table below:
Raw Material\Fertilizers | F1 | F2 | Availability |
A | 2 | 3 | 40 |
B | 1 | 4 | 70 |
By selling one unit of F1 and one unit of F2, company gets a profit of ₹ 500 and ₹ 750 respectively. Formulate the problem as L.P.P. to maximize the profit.
Choose the correct alternative :
The corner points of the feasible region are (0, 0), (2, 0), `(12/7, 3/7)` and (0,1) then the point of maximum z = 7x + y
If the corner points of the feasible region are (0, 0), (3, 0), (2, 1) and `(0, 7/3)` the maximum value of z = 4x + 5y is ______.
State whether the following is True or False :
Saina wants to invest at most ₹ 24000 in bonds and fixed deposits. Mathematically this constraints is written as x + y ≤ 24000 where x is investment in bond and y is in fixed deposits.
The feasible region is the set of point which satisfy.
Which value of x is in the solution set of inequality − 2X + Y ≥ 17
Choose the correct alternative:
The feasible region is
State whether the following statement is True or False:
Objective function of LPP is a relation between the decision variables
A company produces two types of products say type A and B. Profits on the two types of product are ₹ 30/- and ₹ 40/- per kg respectively. The data on resources required and availability of resources are given below.
Requirements | Capacity available per month | ||
Product A | Product B | ||
Raw material (kgs) | 60 | 120 | 12000 |
Machining hours/piece | 8 | 5 | 600 |
Assembling (man hours) | 3 | 4 | 500 |
Formulate this problem as a linear programming problem to maximize the profit.
A company manufactures two models of voltage stabilizers viz., ordinary and auto-cut. All components of the stabilizers are purchased from outside sources, assembly and testing is carried out at the company’s own works. The assembly and testing time required for the two models are 0.8 hours each for ordinary and 1.20 hours each for auto-cut. Manufacturing capacity 720 hours at present is available per week. The market for the two models has been surveyed which suggests a maximum weekly sale of 600 units of ordinary and 400 units of auto-cut. Profit per unit for ordinary and auto-cut models has been estimated at ₹ 100 and ₹ 150 respectively. Formulate the linear programming problem.
Solve the following linear programming problem graphically.
Maximize Z = 3x1 + 5x2 subject to the constraints: x1 + x2 ≤ 6, x1 ≤ 4; x2 ≤ 5, and x1, x2 ≥ 0.
Which of the following can be considered as the objective function of a linear programming problem?
The optimal value of the objective function is attained at the ______ of feasible region.
The set of feasible solutions of LPP is a ______.
Solution which satisfy all constraints is called ______ solution.
Shamli wants to invest ₹ 50, 000 in saving certificates and PPF. She wants to invest atleast ₹ 15,000 in saving certificates and at least ₹ 20,000 in PPF. The rate of interest on saving certificates is 8% p.a. and that on PPF is 9% p.a. Formulation of the above problem as LPP to determine maximum yearly income, is ______.
Solve the following LPP by graphical method:
Maximize: z = 3x + 5y Subject to: x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0
Two kinds of foods A and B are being considered to form a weekly diet. The minimum weekly requirements of fats, Carbohydrates and proteins are 12, 16 and 15 units respectively. One kg of food A has 2, 8 and 5 units respectively of these ingredients and one kg of food B has 6, 2 and 3 units respectively. The price of food A is Rs. 4 per kg and that of food B is Rs. 3 per kg. Formulate the L.P.P. and find the minimum cost.
Sketch the graph of the following inequation in XOY co-ordinate system.
x + y ≤ 0
Sketch the graph of the following inequation in XOY co-ordinate system.
2y - 5x ≥ 0