हिंदी

Obtain the trend values for the following data using 5 yearly moving averages: Year 2000 2001 2002 2003 2004 Productionxi 10 15 20 25 30 Year 2005 2006 2007 2008 2009 Productionxi 35 40 45 50 55 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Obtain the trend values for the following data using 5 yearly moving averages:

Year 2000 2001 2002 2003 2004
Production
xi
10 15 20 25 30
Year 2005 2006 2007 2008 2009
Production
xi
35 40 45 50 55
सारिणी

उत्तर

Year Production 5-Yearly
Moving
total
5-yearly
Moving
average
(Trend value)
2000 10
2001 15
2002 20 100 20
2003 25 125 25
2004 30 150 30
2005 35 175 35
2006 40 200 40
2007 45 235 45
2008 50
2009 55
shaalaa.com
Measurement of Secular Trend
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (March) Set 1

APPEARS IN

संबंधित प्रश्न

Obtain the trend values for the above data using 3-yearly moving averages.


The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.

Year 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
Production
(Million Barrels)
0 0 1 1 2 3 4 5 6 7 8 9 8 9 10

i. Obtain trend values for the above data using 5-yearly moving averages.
ii. Plot the original time series and trend values obtained above on the same graph.


Choose the correct alternative :

Which of the following is a major problem for forecasting, especially when using the method of least squares?


Choose the correct alternative :

What is a disadvantage of the graphical method of determining a trend line?


The simplest method of measuring trend of time series is ______.


Fill in the blank :

The method of measuring trend of time series using only averages is _______


State whether the following is True or False :

Moving average method of finding trend is very complicated and involves several calculations.


State whether the following is True or False :

Least squares method of finding trend is very simple and does not involve any calculations.


Fit a trend line to the following data by the method of least squares.

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10

Solve the following problem :

Obtain trend values for the following data using 5-yearly moving averages.

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10

Solve the following problem :

Following table shows the amount of sugar production (in lac tonnes) for the years 1971 to 1982.

Year 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 1 0 1 2 3 2 3 6 5 1 4 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

Following table shows the number of traffic fatalities (in a state) resulting from drunken driving for years 1975 to 1983.

Year 1975 1976 1977 1978 1979 1980 1981 1982 1983
No. of deaths 0 6 3 8 2 9 4 5 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

Fit a trend line to data in Problem 13 by the method of least squares.


The complicated but efficient method of measuring trend of time series is ______


State whether the following statement is True or False: 

Moving average method of finding trend is very complicated and involves several calculations


The following table gives the production of steel (in millions of tons) for years 1976 to 1986.

Year 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
Production 0 4 4 2 6 8 5 9 4 10 10

Obtain the trend value for the year 1990


The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.

Year 1962 1963 1964 1965 1966 1967 1968 1969
Production
(million barrels)
0 0 1 1 2 3 4 5
Year 1970 1971 1972 1973 1974 1975 1976  
Production
(million barrels)
6 7 8 9 8 9 10  
  1. Obtain trend values for the above data using 5-yearly moving averages.
  2. Plot the original time series and trend values obtained above on the same graph.

Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010

Year 1980 1985 1990 1995
IMR 10 7 5 4
Year 2000 2005 2010  
IMR 3 1 0  

Fit a trend line by the method of least squares

Solution: Let us fit equation of trend line for above data.

Let the equation of trend line be y = a + bx   .....(i)

Here n = 7(odd), middle year is `square` and h = 5

Year IMR (y) x x2 x.y
1980 10 – 3 9 – 30
1985 7 – 2 4 – 14
1990 5 – 1 1 – 5
1995 4 0 0 0
2000 3 1 1 3
2005 1 2 4 2
2010 0 3 9 0
Total 30 0 28 – 44

The normal equations are

Σy = na + bΣx

As, Σx = 0, a = `square`

Also, Σxy = aΣx + bΣx2

As, Σx = 0, b =`square`

∴ The equation of trend line is y = `square`


Obtain trend values for data, using 3-yearly moving averages
Solution:

Year IMR 3 yearly
moving total
3-yearly moving
average

(trend value)
1980 10
1985 7 `square` 7.33
1990 5 16 `square`
1995 4 12 4
2000 3 8 `square`
2005 1 `square` 1.33
2010 0

Complete the table using 4 yearly moving average method.

Year Production 4 yearly
moving
total
4 yearly
centered
total
4 yearly centered
moving average
(trend values)
2006 19  
    `square`    
2007 20   `square`
    72    
2008 17   142 17.75
    70    
2009 16   `square` 17
    `square`    
2010 17   133 `square`
    67    
2011 16   `square` `square`
    `square`    
2012 18   140 17.5
    72    
2013 17   147 18.375
    75    
2014 21  
       
2015 19  

Following table shows the amount of sugar production (in lakh tonnes) for the years 1931 to 1941:

Year Production Year Production
1931 1 1937 8
1932 0 1938 6
1933 1 1939 5
1934 2 1940 1
1935 3 1941 4
1936 2    

Complete the following activity to fit a trend line by method of least squares:


The complicated but efficient method of measuring trend of time series is ______.


The publisher of a magazine wants to determine the rate of increase in the number of subscribers. The following table shows the subscription information for eight consecutive years:

Years 1976 1977 1978 1979
No. of subscribers
(in millions)
12 11 19 17
Years 1980 1981 1982 1983
No. of subscribers
(in millions)
19 18 20 23

Fit a trend line by graphical method.


Following table gives the number of road accidents (in thousands) due to overspeeding in Maharashtra for 9 years. Complete the following activity to find the trend by the method of least squares.

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016
Number of accidents 39 18 21 28 27 27 23 25 22

Solution:

We take origin to 18, we get, the number of accidents as follows:

Year Number of accidents xt t u = t - 5 u2 u.xt
2008 21 1 -4 16 -84
2009 0 2 -3 9 0
2010 3 3 -2 4 -6
2011 10 4 -1 1 -10
2012 9 5 0 0 0
2013 9 6 1 1 9
2014 5 7 2 4 10
2015 7 8 3 9 21
2016 4 9 4 16 16
  `sumx_t=68` - `sumu=0` `sumu^2=60` `square`

The equation of trend is xt =a'+ b'u.

The normal equations are,

`sumx_t=na^'+b^'sumu             ...(1)`

`sumux_t=a^'sumu+b^'sumu^2      ...(2)`

Here, n = 9, `sumx_t=68,sumu=0,sumu^2=60,sumux_t=-44`

Putting these values in normal equations, we get

68 = 9a' + b'(0)     ...(3)

∴ a' = `square`

-44 = a'(0) + b'(60)          ...(4)

∴ b' = `square`

The equation of trend line is given by

xt = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×