हिंदी

Following table shows the amount of sugar production (in lakh tonnes) for the years 1931 to 1941: Year Production Year Production 1931 1 1937 8 1932 0 1938 6 1933 1 1939 5 1934 2 1940 1 1935 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Following table shows the amount of sugar production (in lakh tonnes) for the years 1931 to 1941:

Year Production Year Production
1931 1 1937 8
1932 0 1938 6
1933 1 1939 5
1934 2 1940 1
1935 3 1941 4
1936 2    

Complete the following activity to fit a trend line by method of least squares:

सारिणी

उत्तर

Let yt be the trend line represented by the equation

yt = a + bt

Let u = `(t - "Midvalue")/h`

Midvalue = 1936, h = 1

∴ u = `(t - 1936)/1` = t – 1936

Year (t) yt u u2 u.yt
1931 1 – 5 25 – 5
1932 0 – 4 16 0
1933 1 – 3 09 – 3
1934 2 – 2 04 – 4
1935 3 – 1 01 – 3
1936 2 0 00 0
1937 8 1 01 8
1938 6 2 04 12
1939 5 3 09 15
1940 1 4 16 04
1941 4 5 25 20
  `sumy_t` = 33 `sumu` = 0 `sumu^2` = 110 44

The equation of trend line becomes,

yt = a' + b'u     .......(1)

The normal equations are

`sumy_t = na^' + b^'sumu`  .......(2)

`sumu.y_t = u^'sumu + b^'sumu^2`  ......(3)

From equation (2), we get

∴ Normal equations are

33 = 11a' + 0.b'

⇒ 11a' = 33

⇒ a' = 3

From equation (3), we get

44 = a'.0 + 110.b'

⇒ b' = `44/110` = 0.4

∴ b' = 0.4

∴ The equation of the trend line is given by yt = 3 + (0.4)u.

shaalaa.com
Measurement of Secular Trend
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (March) Set 1

APPEARS IN

संबंधित प्रश्न

Obtain the trend values for the above data using 3-yearly moving averages.


The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.

Year 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
Production
(Million Barrels)
0 0 1 1 2 3 4 5 6 7 8 9 8 9 10

i. Obtain trend values for the above data using 5-yearly moving averages.
ii. Plot the original time series and trend values obtained above on the same graph.


Fill in the blank :

The method of measuring trend of time series using only averages is _______


Fill in the blank :

The complicated but efficient method of measuring trend of time series is _______.


State whether the following is True or False :

Least squares method of finding trend is very simple and does not involve any calculations.


Solve the following problem :

The following table shows the production of pig-iron and ferro- alloys (‘000 metric tonnes)

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

Obtain trend values for the following data using 5-yearly moving averages.

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10

Solve the following problem :

Following table shows the amount of sugar production (in lac tonnes) for the years 1971 to 1982.

Year 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 1 0 1 2 3 2 3 6 5 1 4 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

The percentage of girls’ enrollment in total enrollment for years 1960-2005 is shown in the following table.

Year 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
Percentage 0 3 3 4 4 5 6 8 8 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

Obtain trend values for the data in Problem 7 using 4-yearly moving averages.


Solve the following problem :

Following table shows the number of traffic fatalities (in a state) resulting from drunken driving for years 1975 to 1983.

Year 1975 1976 1977 1978 1979 1980 1981 1982 1983
No. of deaths 0 6 3 8 2 9 4 5 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

Fit a trend line to data in Problem 13 by the method of least squares.


Solve the following problem :

Obtain trend values for data in Problem 13 using 4-yearly moving averages.


Solve the following problem :

Obtain trend values for data in Problem 16 using 3-yearly moving averages.


State whether the following statement is True or False:

The secular trend component of time series represents irregular variations


State whether the following statement is True or False: 

Moving average method of finding trend is very complicated and involves several calculations


The following table gives the production of steel (in millions of tons) for years 1976 to 1986.

Year 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
Production 0 4 4 2 6 8 5 9 4 10 10

Obtain the trend value for the year 1990


Obtain the trend values for the data, using 3-yearly moving averages

Year 1976 1977 1978 1979 1980 1981
Production 0 4 4 2 6 8
Year 1982 1983 1984 1985 1986  
Production 5 9 4 10 10  

Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010

Year 1980 1985 1990 1995
IMR 10 7 5 4
Year 2000 2005 2010  
IMR 3 1 0  

Fit a trend line by the method of least squares

Solution: Let us fit equation of trend line for above data.

Let the equation of trend line be y = a + bx   .....(i)

Here n = 7(odd), middle year is `square` and h = 5

Year IMR (y) x x2 x.y
1980 10 – 3 9 – 30
1985 7 – 2 4 – 14
1990 5 – 1 1 – 5
1995 4 0 0 0
2000 3 1 1 3
2005 1 2 4 2
2010 0 3 9 0
Total 30 0 28 – 44

The normal equations are

Σy = na + bΣx

As, Σx = 0, a = `square`

Also, Σxy = aΣx + bΣx2

As, Σx = 0, b =`square`

∴ The equation of trend line is y = `square`


Obtain trend values for data, using 3-yearly moving averages
Solution:

Year IMR 3 yearly
moving total
3-yearly moving
average

(trend value)
1980 10
1985 7 `square` 7.33
1990 5 16 `square`
1995 4 12 4
2000 3 8 `square`
2005 1 `square` 1.33
2010 0

Complete the table using 4 yearly moving average method.

Year Production 4 yearly
moving
total
4 yearly
centered
total
4 yearly centered
moving average
(trend values)
2006 19  
    `square`    
2007 20   `square`
    72    
2008 17   142 17.75
    70    
2009 16   `square` 17
    `square`    
2010 17   133 `square`
    67    
2011 16   `square` `square`
    `square`    
2012 18   140 17.5
    72    
2013 17   147 18.375
    75    
2014 21  
       
2015 19  

The following table shows gross capital information (in Crore ₹) for years 1966 to 1975:

Years 1966 1967 1968 1969 1970
Gross Capital information 20 25 25 30 35
Years 1971 1972 1973 1974 1975
Gross Capital information 30 45 40 55 65

Obtain trend values using 5-yearly moving values.


Fit a trend line to the following data by the method of least square :

Year 1980 1985 1990 1995 2000 2005 2010
IMR 10 7 5 4 3 1 0

Complete the following activity to fit a trend line to the following data by the method of least squares.

Year 1975 1976 1977 1978 1979 1980 1981 1982 1983
Number of deaths 0 6 3 8 2 9 4 5 10

Solution:

Here n = 9. We transform year t to u by taking u = t - 1979. We construct the following table for calculation :

Year t Number of deaths xt u = t - 1979 u2 uxt
1975 0 - 4 16 0
1976 6 - 3 9 - 18
1977 3 - 2 4 - 6
1978 8 - 1 1 - 8
1979 2 0 0 0
1980 9 1 1 9
1981 4 2 4 8
1982 5 3 9 15
1983 10 4 16 40
  `sumx_t` =47 `sumu`=0 `sumu^2=60` `square`

The equation of trend line is xt= a' + b'u.

The normal equations are,

`sumx_t = na^' + b^' sumu`              ...(1)

`sumux_t = a^'sumu + b^'sumu^2`      ...(2)

Here, n = 9, `sumx_t = 47, sumu= 0, sumu^2 = 60`

By putting these values in normal equations, we get

47 = 9a' + b' (0)       ...(3)

40 = a'(0) + b'(60)      ...(4)

From equation (3), we get a' = `square`

From equation (4), we get b' = `square`

∴ the equation of trend line is xt = `square`


Following table gives the number of road accidents (in thousands) due to overspeeding in Maharashtra for 9 years. Complete the following activity to find the trend by the method of least squares.

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016
Number of accidents 39 18 21 28 27 27 23 25 22

Solution:

We take origin to 18, we get, the number of accidents as follows:

Year Number of accidents xt t u = t - 5 u2 u.xt
2008 21 1 -4 16 -84
2009 0 2 -3 9 0
2010 3 3 -2 4 -6
2011 10 4 -1 1 -10
2012 9 5 0 0 0
2013 9 6 1 1 9
2014 5 7 2 4 10
2015 7 8 3 9 21
2016 4 9 4 16 16
  `sumx_t=68` - `sumu=0` `sumu^2=60` `square`

The equation of trend is xt =a'+ b'u.

The normal equations are,

`sumx_t=na^'+b^'sumu             ...(1)`

`sumux_t=a^'sumu+b^'sumu^2      ...(2)`

Here, n = 9, `sumx_t=68,sumu=0,sumu^2=60,sumux_t=-44`

Putting these values in normal equations, we get

68 = 9a' + b'(0)     ...(3)

∴ a' = `square`

-44 = a'(0) + b'(60)          ...(4)

∴ b' = `square`

The equation of trend line is given by

xt = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×