Advertisements
Advertisements
प्रश्न
Solve the following problem :
Fit a trend line to data in Problem 13 by the method of least squares.
उत्तर
In the given problem, n = 9 (odd), middle t – value is 1979, h – 1
u = `"t - middle value"/"h" = ("t" - 1979)/(1)` = t – 1979
We obtain the following table.
Year t |
No. of deaths yt |
u = t – 1979 | u2 | uyt | Trend Value |
1975 | 0 | –4 | 16 | 0 | 2.5554 |
1976 | 6 | –3 | 9 | –18 | 3.2221 |
1977 | 3 | –2 | 4 | –6 | 3.8888 |
1978 | 8 | –1 | 1 | –8 | 4.5555 |
1979 | 2 | 0 | 0 | 0 | 5.2222 |
1980 | 9 | 1 | 1 | 9 | 5.8887 |
1981 | 4 | 2 | 4 | 8 | 6.5556 |
1982 | 5 | 3 | 9 | 15 | 7.2223 |
1983 | 10 | 4 | 16 | 40 | 7.8890 |
Total | 47 | 0 | 60 | 40 |
From the table, n = 9, `sumy_"t" = 47, sumu = 0, sumu^2 = 60,sumuy_"t" = 40`
The two normal equations are: `sumy_"t" = "na"' + "b"' sumu "and" sumuy_"t", = a'sumu + b'sumu^2`
∴ 47 = 9a' + b'(0) ...(i) and
40 = a'(0) + b'(60) ...(ii)
From (i), a' = `(47)/(9)` = 5.2222
From (ii), b' = `(40)/(60)` = 0.6667
∴ The equation of the trend line is yt = a' + b'u
i.e., yt = 5.2222 + 0.6667 u, where u = t – 1979.
APPEARS IN
संबंधित प्रश्न
Fit a trend line to the data in Problem 7 by the method of least squares. Also, obtain the trend value for the year 1990.
Obtain the trend values for the above data using 3-yearly moving averages.
Choose the correct alternative :
We can use regression line for past data to forecast future data. We then use the line which_______.
Fill in the blank :
The complicated but efficient method of measuring trend of time series is _______.
State whether the following is True or False :
Graphical method of finding trend is very complicated and involves several calculations.
State whether the following is True or False :
Moving average method of finding trend is very complicated and involves several calculations.
Obtain trend values for the following data using 4-yearly centered moving averages.
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production | 1 | 0 | 1 | 2 | 3 | 2 |
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 3 | 6 | 5 | 1 | 4 | 10 |
Solve the following problem :
Obtain trend values for the data in Problem 7 using 4-yearly moving averages.
Solve the following problem :
Fit a trend line to data by the method of least squares.
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
Number of boxes (in ten thousands) | 1 | 0 | 3 | 8 | 10 | 4 | 5 | 8 |
Solve the following problem :
Following table shows the number of traffic fatalities (in a state) resulting from drunken driving for years 1975 to 1983.
Year | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
No. of deaths | 0 | 6 | 3 | 8 | 2 | 9 | 4 | 5 | 10 |
Fit a trend line to the above data by graphical method.
Choose the correct alternative:
Moving averages are useful in identifying ______.
The method of measuring trend of time series using only averages is ______
State whether the following statement is True or False:
Least squares method of finding trend is very simple and does not involve any calculations
Following table shows the amount of sugar production (in lac tons) for the years 1971 to 1982
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production | 1 | 0 | 1 | 2 | 3 | 2 |
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 4 | 6 | 5 | 1 | 4 | 10 |
Fit a trend line by the method of least squares
The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 |
Production (million barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 |
Year | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | |
Production (million barrels) |
6 | 7 | 8 | 9 | 8 | 9 | 10 |
- Obtain trend values for the above data using 5-yearly moving averages.
- Plot the original time series and trend values obtained above on the same graph.
Obtain trend values for data, using 3-yearly moving averages
Solution:
Year | IMR | 3 yearly moving total |
3-yearly moving average (trend value) |
1980 | 10 | – | – |
1985 | 7 | `square` | 7.33 |
1990 | 5 | 16 | `square` |
1995 | 4 | 12 | 4 |
2000 | 3 | 8 | `square` |
2005 | 1 | `square` | 1.33 |
2010 | 0 | – | – |
Fit equation of trend line for the data given below.
Year | Production (y) | x | x2 | xy |
2006 | 19 | – 9 | 81 | – 171 |
2007 | 20 | – 7 | 49 | – 140 |
2008 | 14 | – 5 | 25 | – 70 |
2009 | 16 | – 3 | 9 | – 48 |
2010 | 17 | – 1 | 1 | – 17 |
2011 | 16 | 1 | 1 | 16 |
2012 | 18 | 3 | 9 | 54 |
2013 | 17 | 5 | 25 | 85 |
2014 | 21 | 7 | 49 | 147 |
2015 | 19 | 9 | 81 | 171 |
Total | 177 | 0 | 330 | 27 |
Let the equation of trend line be y = a + bx .....(i)
Here n = `square` (even), two middle years are `square` and 2011, and h = `square`
The normal equations are Σy = na + bΣx
As Σx = 0, a = `square`
Also, Σxy = aΣx + bΣx2
As Σx = 0, b = `square`
Substitute values of a and b in equation (i) the equation of trend line is `square`
To find trend value for the year 2016, put x = `square` in the above equation.
y = `square`
Complete the table using 4 yearly moving average method.
Year | Production | 4 yearly moving total |
4 yearly centered total |
4 yearly centered moving average (trend values) |
2006 | 19 | – | – | |
`square` | ||||
2007 | 20 | – | `square` | |
72 | ||||
2008 | 17 | 142 | 17.75 | |
70 | ||||
2009 | 16 | `square` | 17 | |
`square` | ||||
2010 | 17 | 133 | `square` | |
67 | ||||
2011 | 16 | `square` | `square` | |
`square` | ||||
2012 | 18 | 140 | 17.5 | |
72 | ||||
2013 | 17 | 147 | 18.375 | |
75 | ||||
2014 | 21 | – | – | |
– | ||||
2015 | 19 | – | – |
The following table shows gross capital information (in Crore ₹) for years 1966 to 1975:
Years | 1966 | 1967 | 1968 | 1969 | 1970 |
Gross Capital information | 20 | 25 | 25 | 30 | 35 |
Years | 1971 | 1972 | 1973 | 1974 | 1975 |
Gross Capital information | 30 | 45 | 40 | 55 | 65 |
Obtain trend values using 5-yearly moving values.