हिंदी

Fit equation of trend line for the data given below. Year Production (y) x x2 xy 2006 19 – 9 81 – 171 2007 20 – 7 49 – 140 2008 14 – 5 25 – 70 2009 16 – 3 9 – 48 2010 17 – 1 1 – 17 2011 16 1 1 16 201 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Fit equation of trend line for the data given below.

Year Production (y) x x2 xy
2006 19 – 9 81 – 171
2007 20 – 7 49 – 140
2008 14 – 5 25 – 70
2009 16 – 3 9 – 48
2010 17 – 1 1 – 17
2011 16 1 1 16
2012 18 3 9 54
2013 17 5 25 85
2014 21 7 49 147
2015 19 9 81 171
Total 177 0 330 27

Let the equation of trend line be y = a + bx   .....(i)

Here n = `square` (even), two middle years are `square` and 2011, and h = `square`

The normal equations are Σy = na + bΣx

As Σx = 0, a = `square`

Also, Σxy = aΣx + bΣx2

As Σx = 0, b = `square`

Substitute values of a and b in equation (i) the equation of trend line is `square`

To find trend value for the year 2016, put x = `square` in the above equation.

y = `square`

सारिणी
योग

उत्तर

Let the equation of trend line be y = a + bx   .....(i)

Here n = 10 (even), two middle years are 2010 and 2011, and h = 2 

The normal equations are Σy = na + bΣx

As Σx = 0,

∴ 177 = 10a + b(0)

∴ a = `177/10`

a = 17.7 

Also, Σxy = aΣx + bΣx2

As Σx = 0, 

27 = a(0) + b(330)

∴ b = `27/330`

= 0.08

b = 0.1

Substitute values of a and b in equation (i) the equation of trend line is y = 17.7 + 0.1x

To find trend value for the year 2016, put x = 11 in the above equation.

y = 17.7 + 1.1

y = 18.8

shaalaa.com
Measurement of Secular Trend
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.4: Time Series - Q.5

संबंधित प्रश्न

Obtain the trend line for the above data using 5 yearly moving averages.


Obtain the trend values for the above data using 3-yearly moving averages.


Choose the correct alternative :

We can use regression line for past data to forecast future data. We then use the line which_______.


Fill in the blank :

The method of measuring trend of time series using only averages is _______


State whether the following is True or False :

Moving average method of finding trend is very complicated and involves several calculations.


State whether the following is True or False :

Least squares method of finding trend is very simple and does not involve any calculations.


State whether the following is True or False :

All the three methods of measuring trend will always give the same results.


Solve the following problem :

Obtain trend values for the following data using 5-yearly moving averages.

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10

Solve the following problem :

Obtain trend values for data in Problem 10 using 3-yearly moving averages.


Solve the following problem :

Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010.

Year 1980 1985 1990 1995 2000 2005 2010
IMR 10 7 5 4 3 1 0

Fit a trend line to the above data by graphical method.


Choose the correct alternative:

Moving averages are useful in identifying ______.


The complicated but efficient method of measuring trend of time series is ______


Use the method of least squares to fit a trend line to the data given below. Also, obtain the trend value for the year 1975.

Year 1962 1963 1964 1965 1966 1967 1968 1969
Production
(million barrels)
0 0 1 1 2 3 4 5
Year 1970 1971 1972 1973 1974 1975 1976  
Production
(million barrels)
6 8 9 9 8 7 10  

The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.

Year 1962 1963 1964 1965 1966 1967 1968 1969
Production
(million barrels)
0 0 1 1 2 3 4 5
Year 1970 1971 1972 1973 1974 1975 1976  
Production
(million barrels)
6 7 8 9 8 9 10  
  1. Obtain trend values for the above data using 5-yearly moving averages.
  2. Plot the original time series and trend values obtained above on the same graph.

Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010

Year 1980 1985 1990 1995
IMR 10 7 5 4
Year 2000 2005 2010  
IMR 3 1 0  

Fit a trend line by the method of least squares

Solution: Let us fit equation of trend line for above data.

Let the equation of trend line be y = a + bx   .....(i)

Here n = 7(odd), middle year is `square` and h = 5

Year IMR (y) x x2 x.y
1980 10 – 3 9 – 30
1985 7 – 2 4 – 14
1990 5 – 1 1 – 5
1995 4 0 0 0
2000 3 1 1 3
2005 1 2 4 2
2010 0 3 9 0
Total 30 0 28 – 44

The normal equations are

Σy = na + bΣx

As, Σx = 0, a = `square`

Also, Σxy = aΣx + bΣx2

As, Σx = 0, b =`square`

∴ The equation of trend line is y = `square`


Complete the table using 4 yearly moving average method.

Year Production 4 yearly
moving
total
4 yearly
centered
total
4 yearly centered
moving average
(trend values)
2006 19  
    `square`    
2007 20   `square`
    72    
2008 17   142 17.75
    70    
2009 16   `square` 17
    `square`    
2010 17   133 `square`
    67    
2011 16   `square` `square`
    `square`    
2012 18   140 17.5
    72    
2013 17   147 18.375
    75    
2014 21  
       
2015 19  

The publisher of a magazine wants to determine the rate of increase in the number of subscribers. The following table shows the subscription information for eight consecutive years:

Years 1976 1977 1978 1979
No. of subscribers
(in millions)
12 11 19 17
Years 1980 1981 1982 1983
No. of subscribers
(in millions)
19 18 20 23

Fit a trend line by graphical method.


Fit a trend line to the following data by the method of least square :

Year 1980 1985 1990 1995 2000 2005 2010
IMR 10 7 5 4 3 1 0

Complete the following activity to fit a trend line to the following data by the method of least squares.

Year 1975 1976 1977 1978 1979 1980 1981 1982 1983
Number of deaths 0 6 3 8 2 9 4 5 10

Solution:

Here n = 9. We transform year t to u by taking u = t - 1979. We construct the following table for calculation :

Year t Number of deaths xt u = t - 1979 u2 uxt
1975 0 - 4 16 0
1976 6 - 3 9 - 18
1977 3 - 2 4 - 6
1978 8 - 1 1 - 8
1979 2 0 0 0
1980 9 1 1 9
1981 4 2 4 8
1982 5 3 9 15
1983 10 4 16 40
  `sumx_t` =47 `sumu`=0 `sumu^2=60` `square`

The equation of trend line is xt= a' + b'u.

The normal equations are,

`sumx_t = na^' + b^' sumu`              ...(1)

`sumux_t = a^'sumu + b^'sumu^2`      ...(2)

Here, n = 9, `sumx_t = 47, sumu= 0, sumu^2 = 60`

By putting these values in normal equations, we get

47 = 9a' + b' (0)       ...(3)

40 = a'(0) + b'(60)      ...(4)

From equation (3), we get a' = `square`

From equation (4), we get b' = `square`

∴ the equation of trend line is xt = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×