हिंदी

Use the method of least squares to fit a trend line to the data in Problem 6 below. Also, obtain the trend value for the year 1975 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Use the method of least squares to fit a trend line to the data given below. Also, obtain the trend value for the year 1975.

Year 1962 1963 1964 1965 1966 1967 1968 1969
Production
(million barrels)
0 0 1 1 2 3 4 5
Year 1970 1971 1972 1973 1974 1975 1976  
Production
(million barrels)
6 8 9 9 8 7 10  
सारिणी
योग

उत्तर

In the given problem, n = 15 (odd), middle t – values is 1969, h = 1

u = `("t" - "middle value")/"h"`

= `("t" - 1969)/1`

= t – 1969

We obtain the following table:

Year 
t

Production
yt
u = t − 1969 u2 uyt Trend Value
1962 0 −  49 0 − 0.6
1963 0 − 6 36 0 0.2
1964 1  − 5 25 − 5 1
1965 1 − 4 16 − 4 1.8
1966 2 − 3 9 − 6 2.6
1967 3 − 2 4 − 6 3.4
1968 4 − 1 1 − 4 4.2
1969 5 0 0 0 5
1970 6 1 1 6 5.8
1971 8 2 4 16 6.6
1972 9 3 9 27 7.4
1973 9 4 16 36 8.
1974 8 5 25 40 9
1975 9 6 36 54 9.8
1976 10 7 49 70 10.6
Total 75 0 280 224  

From the table, n = 15, ∑yt = 75, ∑u = 0, ∑u2 = 280, ∑uyt = 224

The two normal equations are:

∑yt = na' + b'∑u and ∑uyt = a' ∑u + b'∑u2

∴ 75 = 15a' + b'(0)   ......(i)

and

224 = a′(0) + b′(280)  .....(ii)

From (i), a′ = `75/15` = 5

From (ii), b′= `224/280` = 0.8

∴ The equation of the trend line is yt = a′ + b′u

i.e., yt = 5 + 0.8 u, where u = t – 1969

Now, for t = 1975, u = 1975 – 1969 = 6

∴  yt = 5 + 0.8 × 6 = 9.8

shaalaa.com
Measurement of Secular Trend
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.4: Time Series - Q.4

संबंधित प्रश्न

Obtain the trend line for the above data using 5 yearly moving averages.


Obtain the trend values for the data in using 4-yearly centered moving averages.

Year 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
Index 0 2 3 3 2 4 5 6 7 10

The simplest method of measuring trend of time series is ______.


Fill in the blank :

The method of measuring trend of time series using only averages is _______


State whether the following is True or False :

Graphical method of finding trend is very complicated and involves several calculations.


Solve the following problem :

The following table shows the production of pig-iron and ferro- alloys (‘000 metric tonnes)

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10

Fit a trend line to the above data by graphical method.


Fit a trend line to the following data by the method of least squares.

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10

Solve the following problem :

Following table shows the amount of sugar production (in lac tonnes) for the years 1971 to 1982.

Year 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 1 0 1 2 3 2 3 6 5 1 4 10

Fit a trend line to the above data by graphical method.


Obtain trend values for the following data using 4-yearly centered moving averages.

Year 1971 1972 1973 1974 1975 1976
Production 1 0 1 2 3 2
Year 1977 1978 1979 1980 1981 1982
Production 3 6 5 1 4 10

Solve the following problem :

Obtain trend values for the data in Problem 7 using 4-yearly moving averages.


Solve the following problem :

Obtain trend values for data in Problem 10 using 3-yearly moving averages.


Solve the following problem :

Following table shows the number of traffic fatalities (in a state) resulting from drunken driving for years 1975 to 1983.

Year 1975 1976 1977 1978 1979 1980 1981 1982 1983
No. of deaths 0 6 3 8 2 9 4 5 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

Fit a trend line to data in Problem 13 by the method of least squares.


Solve the following problem :

Obtain trend values for data in Problem 13 using 4-yearly moving averages.


Choose the correct alternative:

Moving averages are useful in identifying ______.


The complicated but efficient method of measuring trend of time series is ______


The simplest method of measuring trend of time series is ______


State whether the following statement is True or False: 

Moving average method of finding trend is very complicated and involves several calculations


Following table shows the amount of sugar production (in lac tons) for the years 1971 to 1982

Year 1971 1972 1973 1974 1975 1976
Production 1 0 1 2 3 2
Year 1977 1978 1979 1980 1981 1982
Production 4 6 5 1 4 10

Fit a trend line by the method of least squares


Obtain the trend values for the data, using 3-yearly moving averages

Year 1976 1977 1978 1979 1980 1981
Production 0 4 4 2 6 8
Year 1982 1983 1984 1985 1986  
Production 5 9 4 10 10  

The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.

Year 1962 1963 1964 1965 1966 1967 1968 1969
Production
(million barrels)
0 0 1 1 2 3 4 5
Year 1970 1971 1972 1973 1974 1975 1976  
Production
(million barrels)
6 7 8 9 8 9 10  
  1. Obtain trend values for the above data using 5-yearly moving averages.
  2. Plot the original time series and trend values obtained above on the same graph.

Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010

Year 1980 1985 1990 1995
IMR 10 7 5 4
Year 2000 2005 2010  
IMR 3 1 0  

Fit a trend line by the method of least squares

Solution: Let us fit equation of trend line for above data.

Let the equation of trend line be y = a + bx   .....(i)

Here n = 7(odd), middle year is `square` and h = 5

Year IMR (y) x x2 x.y
1980 10 – 3 9 – 30
1985 7 – 2 4 – 14
1990 5 – 1 1 – 5
1995 4 0 0 0
2000 3 1 1 3
2005 1 2 4 2
2010 0 3 9 0
Total 30 0 28 – 44

The normal equations are

Σy = na + bΣx

As, Σx = 0, a = `square`

Also, Σxy = aΣx + bΣx2

As, Σx = 0, b =`square`

∴ The equation of trend line is y = `square`


Obtain the trend values for the following data using 5 yearly moving averages:

Year 2000 2001 2002 2003 2004
Production
xi
10 15 20 25 30
Year 2005 2006 2007 2008 2009
Production
xi
35 40 45 50 55

The publisher of a magazine wants to determine the rate of increase in the number of subscribers. The following table shows the subscription information for eight consecutive years:

Years 1976 1977 1978 1979
No. of subscribers
(in millions)
12 11 19 17
Years 1980 1981 1982 1983
No. of subscribers
(in millions)
19 18 20 23

Fit a trend line by graphical method.


Following table gives the number of road accidents (in thousands) due to overspeeding in Maharashtra for 9 years. Complete the following activity to find the trend by the method of least squares.

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016
Number of accidents 39 18 21 28 27 27 23 25 22

Solution:

We take origin to 18, we get, the number of accidents as follows:

Year Number of accidents xt t u = t - 5 u2 u.xt
2008 21 1 -4 16 -84
2009 0 2 -3 9 0
2010 3 3 -2 4 -6
2011 10 4 -1 1 -10
2012 9 5 0 0 0
2013 9 6 1 1 9
2014 5 7 2 4 10
2015 7 8 3 9 21
2016 4 9 4 16 16
  `sumx_t=68` - `sumu=0` `sumu^2=60` `square`

The equation of trend is xt =a'+ b'u.

The normal equations are,

`sumx_t=na^'+b^'sumu             ...(1)`

`sumux_t=a^'sumu+b^'sumu^2      ...(2)`

Here, n = 9, `sumx_t=68,sumu=0,sumu^2=60,sumux_t=-44`

Putting these values in normal equations, we get

68 = 9a' + b'(0)     ...(3)

∴ a' = `square`

-44 = a'(0) + b'(60)          ...(4)

∴ b' = `square`

The equation of trend line is given by

xt = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×