Advertisements
Advertisements
प्रश्न
Use the method of least squares to fit a trend line to the data given below. Also, obtain the trend value for the year 1975.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 |
Production (million barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 |
Year | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | |
Production (million barrels) |
6 | 8 | 9 | 9 | 8 | 7 | 10 |
उत्तर
In the given problem, n = 15 (odd), middle t – values is 1969, h = 1
u = `("t" - "middle value")/"h"`
= `("t" - 1969)/1`
= t – 1969
We obtain the following table:
Year |
Production yt |
u = t − 1969 | u2 | uyt | Trend Value |
1962 | 0 | − | 49 | 0 | − 0.6 |
1963 | 0 | − 6 | 36 | 0 | 0.2 |
1964 | 1 | − 5 | 25 | − 5 | 1 |
1965 | 1 | − 4 | 16 | − 4 | 1.8 |
1966 | 2 | − 3 | 9 | − 6 | 2.6 |
1967 | 3 | − 2 | 4 | − 6 | 3.4 |
1968 | 4 | − 1 | 1 | − 4 | 4.2 |
1969 | 5 | 0 | 0 | 0 | 5 |
1970 | 6 | 1 | 1 | 6 | 5.8 |
1971 | 8 | 2 | 4 | 16 | 6.6 |
1972 | 9 | 3 | 9 | 27 | 7.4 |
1973 | 9 | 4 | 16 | 36 | 8. |
1974 | 8 | 5 | 25 | 40 | 9 |
1975 | 9 | 6 | 36 | 54 | 9.8 |
1976 | 10 | 7 | 49 | 70 | 10.6 |
Total | 75 | 0 | 280 | 224 |
From the table, n = 15, ∑yt = 75, ∑u = 0, ∑u2 = 280, ∑uyt = 224
The two normal equations are:
∑yt = na' + b'∑u and ∑uyt = a' ∑u + b'∑u2
∴ 75 = 15a' + b'(0) ......(i)
and
224 = a′(0) + b′(280) .....(ii)
From (i), a′ = `75/15` = 5
From (ii), b′= `224/280` = 0.8
∴ The equation of the trend line is yt = a′ + b′u
i.e., yt = 5 + 0.8 u, where u = t – 1969
Now, for t = 1975, u = 1975 – 1969 = 6
∴ yt = 5 + 0.8 × 6 = 9.8
संबंधित प्रश्न
Obtain the trend values for the data in using 4-yearly centered moving averages.
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
Index | 0 | 2 | 3 | 3 | 2 | 4 | 5 | 6 | 7 | 10 |
Fit a trend line to the data in Problem 7 by the method of least squares. Also, obtain the trend value for the year 1990.
Obtain the trend values for the above data using 3-yearly moving averages.
Choose the correct alternative :
What is a disadvantage of the graphical method of determining a trend line?
The simplest method of measuring trend of time series is ______.
Fill in the blank :
The complicated but efficient method of measuring trend of time series is _______.
State whether the following is True or False :
Graphical method of finding trend is very complicated and involves several calculations.
State whether the following is True or False :
Moving average method of finding trend is very complicated and involves several calculations.
Solve the following problem :
Obtain trend values for the following data using 5-yearly moving averages.
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
Solve the following problem :
Following table shows the amount of sugar production (in lac tonnes) for the years 1971 to 1982.
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 1 | 0 | 1 | 2 | 3 | 2 | 3 | 6 | 5 | 1 | 4 | 10 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Fit a trend line to data in Problem 4 by the method of least squares.
Solve the following problem :
Obtain trend values for the data in Problem 7 using 4-yearly moving averages.
Solve the following problem :
Following data shows the number of boxes of cereal sold in years 1977 to 1984.
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
No. of boxes in ten thousand | 1 | 0 | 3 | 8 | 10 | 4 | 5 | 8 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Fit a trend line to data by the method of least squares.
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
Number of boxes (in ten thousands) | 1 | 0 | 3 | 8 | 10 | 4 | 5 | 8 |
Solve the following problem :
Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010.
Year | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 |
IMR | 10 | 7 | 5 | 4 | 3 | 1 | 0 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Fit a trend line to data in Problem 16 by the method of least squares.
Choose the correct alternative:
Moving averages are useful in identifying ______.
The simplest method of measuring trend of time series is ______
State whether the following statement is True or False:
The secular trend component of time series represents irregular variations
Following table shows the amount of sugar production (in lac tons) for the years 1971 to 1982
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production | 1 | 0 | 1 | 2 | 3 | 2 |
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 4 | 6 | 5 | 1 | 4 | 10 |
Fit a trend line by the method of least squares
The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 |
Production (million barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 |
Year | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | |
Production (million barrels) |
6 | 7 | 8 | 9 | 8 | 9 | 10 |
- Obtain trend values for the above data using 5-yearly moving averages.
- Plot the original time series and trend values obtained above on the same graph.
Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010
Year | 1980 | 1985 | 1990 | 1995 |
IMR | 10 | 7 | 5 | 4 |
Year | 2000 | 2005 | 2010 | |
IMR | 3 | 1 | 0 |
Fit a trend line by the method of least squares
Solution: Let us fit equation of trend line for above data.
Let the equation of trend line be y = a + bx .....(i)
Here n = 7(odd), middle year is `square` and h = 5
Year | IMR (y) | x | x2 | x.y |
1980 | 10 | – 3 | 9 | – 30 |
1985 | 7 | – 2 | 4 | – 14 |
1990 | 5 | – 1 | 1 | – 5 |
1995 | 4 | 0 | 0 | 0 |
2000 | 3 | 1 | 1 | 3 |
2005 | 1 | 2 | 4 | 2 |
2010 | 0 | 3 | 9 | 0 |
Total | 30 | 0 | 28 | – 44 |
The normal equations are
Σy = na + bΣx
As, Σx = 0, a = `square`
Also, Σxy = aΣx + bΣx2
As, Σx = 0, b =`square`
∴ The equation of trend line is y = `square`
Fit equation of trend line for the data given below.
Year | Production (y) | x | x2 | xy |
2006 | 19 | – 9 | 81 | – 171 |
2007 | 20 | – 7 | 49 | – 140 |
2008 | 14 | – 5 | 25 | – 70 |
2009 | 16 | – 3 | 9 | – 48 |
2010 | 17 | – 1 | 1 | – 17 |
2011 | 16 | 1 | 1 | 16 |
2012 | 18 | 3 | 9 | 54 |
2013 | 17 | 5 | 25 | 85 |
2014 | 21 | 7 | 49 | 147 |
2015 | 19 | 9 | 81 | 171 |
Total | 177 | 0 | 330 | 27 |
Let the equation of trend line be y = a + bx .....(i)
Here n = `square` (even), two middle years are `square` and 2011, and h = `square`
The normal equations are Σy = na + bΣx
As Σx = 0, a = `square`
Also, Σxy = aΣx + bΣx2
As Σx = 0, b = `square`
Substitute values of a and b in equation (i) the equation of trend line is `square`
To find trend value for the year 2016, put x = `square` in the above equation.
y = `square`
The publisher of a magazine wants to determine the rate of increase in the number of subscribers. The following table shows the subscription information for eight consecutive years:
Years | 1976 | 1977 | 1978 | 1979 |
No. of subscribers (in millions) |
12 | 11 | 19 | 17 |
Years | 1980 | 1981 | 1982 | 1983 |
No. of subscribers (in millions) |
19 | 18 | 20 | 23 |
Fit a trend line by graphical method.
Complete the following activity to fit a trend line to the following data by the method of least squares.
Year | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
Number of deaths | 0 | 6 | 3 | 8 | 2 | 9 | 4 | 5 | 10 |
Solution:
Here n = 9. We transform year t to u by taking u = t - 1979. We construct the following table for calculation :
Year t | Number of deaths xt | u = t - 1979 | u2 | uxt |
1975 | 0 | - 4 | 16 | 0 |
1976 | 6 | - 3 | 9 | - 18 |
1977 | 3 | - 2 | 4 | - 6 |
1978 | 8 | - 1 | 1 | - 8 |
1979 | 2 | 0 | 0 | 0 |
1980 | 9 | 1 | 1 | 9 |
1981 | 4 | 2 | 4 | 8 |
1982 | 5 | 3 | 9 | 15 |
1983 | 10 | 4 | 16 | 40 |
`sumx_t` =47 | `sumu`=0 | `sumu^2=60` | `square` |
The equation of trend line is xt= a' + b'u.
The normal equations are,
`sumx_t = na^' + b^' sumu` ...(1)
`sumux_t = a^'sumu + b^'sumu^2` ...(2)
Here, n = 9, `sumx_t = 47, sumu= 0, sumu^2 = 60`
By putting these values in normal equations, we get
47 = 9a' + b' (0) ...(3)
40 = a'(0) + b'(60) ...(4)
From equation (3), we get a' = `square`
From equation (4), we get b' = `square`
∴ the equation of trend line is xt = `square`