मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Fill in the blank : The complicated but efficient method of measuring trend of time series is _______. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Fill in the blank :

The complicated but efficient method of measuring trend of time series is _______.

रिकाम्या जागा भरा

उत्तर

The complicated but efficient method of measuring trend of time series is least square.

shaalaa.com
Measurement of Secular Trend
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Time Series - Miscellaneous Exercise 4 [पृष्ठ ६९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Time Series
Miscellaneous Exercise 4 | Q 2.09 | पृष्ठ ६९

संबंधित प्रश्‍न

Obtain the trend values for the data in using 4-yearly centered moving averages.

Year 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
Index 0 2 3 3 2 4 5 6 7 10

Choose the correct alternative :

Which of the following is a major problem for forecasting, especially when using the method of least squares?


State whether the following is True or False :

Graphical method of finding trend is very complicated and involves several calculations.


State whether the following is True or False :

All the three methods of measuring trend will always give the same results.


Fit a trend line to the following data by the method of least squares.

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10

Solve the following problem :

The percentage of girls’ enrollment in total enrollment for years 1960-2005 is shown in the following table.

Year 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
Percentage 0 3 3 4 4 5 6 8 8 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

Obtain trend values for the data in Problem 7 using 4-yearly moving averages.


Solve the following problem :

Following table shows the number of traffic fatalities (in a state) resulting from drunken driving for years 1975 to 1983.

Year 1975 1976 1977 1978 1979 1980 1981 1982 1983
No. of deaths 0 6 3 8 2 9 4 5 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

Obtain trend values for data in Problem 13 using 4-yearly moving averages.


Solve the following problem :

Fit a trend line to data in Problem 16 by the method of least squares.


Solve the following problem :

Obtain trend values for data in Problem 16 using 3-yearly moving averages.


Solve the following problem :

Following tables shows the wheat yield (‘000 tonnes) in India for years 1959 to 1968.

Year 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
Yield 0 1 2 3 1 0 4 1 2 10

Fit a trend line to the above data by the method of least squares.


The method of measuring trend of time series using only averages is ______


State whether the following statement is True or False: 

Moving average method of finding trend is very complicated and involves several calculations


State whether the following statement is True or False:

Least squares method of finding trend is very simple and does not involve any calculations


The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.

Year 1962 1963 1964 1965 1966 1967 1968 1969
Production
(million barrels)
0 0 1 1 2 3 4 5
Year 1970 1971 1972 1973 1974 1975 1976  
Production
(million barrels)
6 7 8 9 8 9 10  
  1. Obtain trend values for the above data using 5-yearly moving averages.
  2. Plot the original time series and trend values obtained above on the same graph.

Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010

Year 1980 1985 1990 1995
IMR 10 7 5 4
Year 2000 2005 2010  
IMR 3 1 0  

Fit a trend line by the method of least squares

Solution: Let us fit equation of trend line for above data.

Let the equation of trend line be y = a + bx   .....(i)

Here n = 7(odd), middle year is `square` and h = 5

Year IMR (y) x x2 x.y
1980 10 – 3 9 – 30
1985 7 – 2 4 – 14
1990 5 – 1 1 – 5
1995 4 0 0 0
2000 3 1 1 3
2005 1 2 4 2
2010 0 3 9 0
Total 30 0 28 – 44

The normal equations are

Σy = na + bΣx

As, Σx = 0, a = `square`

Also, Σxy = aΣx + bΣx2

As, Σx = 0, b =`square`

∴ The equation of trend line is y = `square`


Fit equation of trend line for the data given below.

Year Production (y) x x2 xy
2006 19 – 9 81 – 171
2007 20 – 7 49 – 140
2008 14 – 5 25 – 70
2009 16 – 3 9 – 48
2010 17 – 1 1 – 17
2011 16 1 1 16
2012 18 3 9 54
2013 17 5 25 85
2014 21 7 49 147
2015 19 9 81 171
Total 177 0 330 27

Let the equation of trend line be y = a + bx   .....(i)

Here n = `square` (even), two middle years are `square` and 2011, and h = `square`

The normal equations are Σy = na + bΣx

As Σx = 0, a = `square`

Also, Σxy = aΣx + bΣx2

As Σx = 0, b = `square`

Substitute values of a and b in equation (i) the equation of trend line is `square`

To find trend value for the year 2016, put x = `square` in the above equation.

y = `square`


Following table shows the amount of sugar production (in lakh tonnes) for the years 1931 to 1941:

Year Production Year Production
1931 1 1937 8
1932 0 1938 6
1933 1 1939 5
1934 2 1940 1
1935 3 1941 4
1936 2    

Complete the following activity to fit a trend line by method of least squares:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×