Advertisements
Advertisements
प्रश्न
Fill in the blank :
The complicated but efficient method of measuring trend of time series is _______.
उत्तर
The complicated but efficient method of measuring trend of time series is least square.
APPEARS IN
संबंधित प्रश्न
Obtain the trend values for the data in using 4-yearly centered moving averages.
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
Index | 0 | 2 | 3 | 3 | 2 | 4 | 5 | 6 | 7 | 10 |
Choose the correct alternative :
Which of the following is a major problem for forecasting, especially when using the method of least squares?
State whether the following is True or False :
Graphical method of finding trend is very complicated and involves several calculations.
State whether the following is True or False :
All the three methods of measuring trend will always give the same results.
Fit a trend line to the following data by the method of least squares.
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
Solve the following problem :
The percentage of girls’ enrollment in total enrollment for years 1960-2005 is shown in the following table.
Year | 1960 | 1965 | 1970 | 1975 | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 |
Percentage | 0 | 3 | 3 | 4 | 4 | 5 | 6 | 8 | 8 | 10 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Obtain trend values for the data in Problem 7 using 4-yearly moving averages.
Solve the following problem :
Following table shows the number of traffic fatalities (in a state) resulting from drunken driving for years 1975 to 1983.
Year | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
No. of deaths | 0 | 6 | 3 | 8 | 2 | 9 | 4 | 5 | 10 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Obtain trend values for data in Problem 13 using 4-yearly moving averages.
Solve the following problem :
Fit a trend line to data in Problem 16 by the method of least squares.
Solve the following problem :
Obtain trend values for data in Problem 16 using 3-yearly moving averages.
Solve the following problem :
Following tables shows the wheat yield (‘000 tonnes) in India for years 1959 to 1968.
Year | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 |
Yield | 0 | 1 | 2 | 3 | 1 | 0 | 4 | 1 | 2 | 10 |
Fit a trend line to the above data by the method of least squares.
The method of measuring trend of time series using only averages is ______
State whether the following statement is True or False:
Moving average method of finding trend is very complicated and involves several calculations
State whether the following statement is True or False:
Least squares method of finding trend is very simple and does not involve any calculations
The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 |
Production (million barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 |
Year | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | |
Production (million barrels) |
6 | 7 | 8 | 9 | 8 | 9 | 10 |
- Obtain trend values for the above data using 5-yearly moving averages.
- Plot the original time series and trend values obtained above on the same graph.
Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010
Year | 1980 | 1985 | 1990 | 1995 |
IMR | 10 | 7 | 5 | 4 |
Year | 2000 | 2005 | 2010 | |
IMR | 3 | 1 | 0 |
Fit a trend line by the method of least squares
Solution: Let us fit equation of trend line for above data.
Let the equation of trend line be y = a + bx .....(i)
Here n = 7(odd), middle year is `square` and h = 5
Year | IMR (y) | x | x2 | x.y |
1980 | 10 | – 3 | 9 | – 30 |
1985 | 7 | – 2 | 4 | – 14 |
1990 | 5 | – 1 | 1 | – 5 |
1995 | 4 | 0 | 0 | 0 |
2000 | 3 | 1 | 1 | 3 |
2005 | 1 | 2 | 4 | 2 |
2010 | 0 | 3 | 9 | 0 |
Total | 30 | 0 | 28 | – 44 |
The normal equations are
Σy = na + bΣx
As, Σx = 0, a = `square`
Also, Σxy = aΣx + bΣx2
As, Σx = 0, b =`square`
∴ The equation of trend line is y = `square`
Fit equation of trend line for the data given below.
Year | Production (y) | x | x2 | xy |
2006 | 19 | – 9 | 81 | – 171 |
2007 | 20 | – 7 | 49 | – 140 |
2008 | 14 | – 5 | 25 | – 70 |
2009 | 16 | – 3 | 9 | – 48 |
2010 | 17 | – 1 | 1 | – 17 |
2011 | 16 | 1 | 1 | 16 |
2012 | 18 | 3 | 9 | 54 |
2013 | 17 | 5 | 25 | 85 |
2014 | 21 | 7 | 49 | 147 |
2015 | 19 | 9 | 81 | 171 |
Total | 177 | 0 | 330 | 27 |
Let the equation of trend line be y = a + bx .....(i)
Here n = `square` (even), two middle years are `square` and 2011, and h = `square`
The normal equations are Σy = na + bΣx
As Σx = 0, a = `square`
Also, Σxy = aΣx + bΣx2
As Σx = 0, b = `square`
Substitute values of a and b in equation (i) the equation of trend line is `square`
To find trend value for the year 2016, put x = `square` in the above equation.
y = `square`
Following table shows the amount of sugar production (in lakh tonnes) for the years 1931 to 1941:
Year | Production | Year | Production |
1931 | 1 | 1937 | 8 |
1932 | 0 | 1938 | 6 |
1933 | 1 | 1939 | 5 |
1934 | 2 | 1940 | 1 |
1935 | 3 | 1941 | 4 |
1936 | 2 |
Complete the following activity to fit a trend line by method of least squares: