मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following problem : Fit a trend line to data in Problem 16 by the method of least squares. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

Fit a trend line to data in Problem 16 by the method of least squares.

बेरीज

उत्तर

In the given problem, n = 7 (odd), middle t – value is 1995, h = 5

u = `"t - middle value"/"h" = ("t" - 1995)/(1)` 

We obtain the following table.

Year
t
Infant mortality rate 
yt
u = `("t" - 1995)/(5)` u2 uyt Trend Value
1980 10 –3 9 –30 8.9999
1985 7 –2 4 –14 7.4285
1990 5 –1 1 –5 5.8571
1995 4 0 0 0 4.2857
2000 3 1 1 3 2.7143
2005 1 2 4 2 1.1429
2010 0 3 9 0 –0.4285
Total 30 0 28 –44  

From the table, n = 7, `sumy_"t" = 10, sumu = 0, sumu^2 = 28,sumuy_"t" = – 44`

The two normal equations are: `sumy_"t" = "na"' + "b"' sumu  "and" sumuy_"t", = a'sumu + b'sumu^2`

∴ 30 = 7a' + b'(0)               ...(i)   and
– 44 = a'(0) + b'(28)           ...(ii)

From (i), a' = `(30)/(7)` = 4.2857

From (ii), b' = `(-44)/(28)` = 1.5714
∴  The equation of the trend line is yt = a' + b'u
i.e., yt = 4.2857 – 1.5714 u, where u = `("t" - 1995)/(5)`.

shaalaa.com
Measurement of Secular Trend
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Time Series - Miscellaneous Exercise 4 [पृष्ठ ७०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Time Series
Miscellaneous Exercise 4 | Q 4.17 | पृष्ठ ७०

संबंधित प्रश्‍न

Obtain the trend line for the above data using 5 yearly moving averages.


The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.

Year 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
Production
(Million Barrels)
0 0 1 1 2 3 4 5 6 7 8 9 8 9 10

i. Obtain trend values for the above data using 5-yearly moving averages.
ii. Plot the original time series and trend values obtained above on the same graph.


Choose the correct alternative :

We can use regression line for past data to forecast future data. We then use the line which_______.


Choose the correct alternative :

Which of the following is a major problem for forecasting, especially when using the method of least squares?


The simplest method of measuring trend of time series is ______.


Fill in the blank :

The method of measuring trend of time series using only averages is _______


Solve the following problem :

The following table shows the production of pig-iron and ferro- alloys (‘000 metric tonnes)

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

Following table shows the amount of sugar production (in lac tonnes) for the years 1971 to 1982.

Year 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 1 0 1 2 3 2 3 6 5 1 4 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

The percentage of girls’ enrollment in total enrollment for years 1960-2005 is shown in the following table.

Year 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
Percentage 0 3 3 4 4 5 6 8 8 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

Obtain trend values for data in Problem 10 using 3-yearly moving averages.


Solve the following problem :

Obtain trend values for data in Problem 13 using 4-yearly moving averages.


Choose the correct alternative:

Moving averages are useful in identifying ______.


State whether the following statement is True or False:

Least squares method of finding trend is very simple and does not involve any calculations


Obtain the trend values for the data, using 3-yearly moving averages

Year 1976 1977 1978 1979 1980 1981
Production 0 4 4 2 6 8
Year 1982 1983 1984 1985 1986  
Production 5 9 4 10 10  

The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.

Year 1962 1963 1964 1965 1966 1967 1968 1969
Production
(million barrels)
0 0 1 1 2 3 4 5
Year 1970 1971 1972 1973 1974 1975 1976  
Production
(million barrels)
6 7 8 9 8 9 10  
  1. Obtain trend values for the above data using 5-yearly moving averages.
  2. Plot the original time series and trend values obtained above on the same graph.

Obtain the trend values for the following data using 5 yearly moving averages:

Year 2000 2001 2002 2003 2004
Production
xi
10 15 20 25 30
Year 2005 2006 2007 2008 2009
Production
xi
35 40 45 50 55

The following table shows gross capital information (in Crore ₹) for years 1966 to 1975:

Years 1966 1967 1968 1969 1970
Gross Capital information 20 25 25 30 35
Years 1971 1972 1973 1974 1975
Gross Capital information 30 45 40 55 65

Obtain trend values using 5-yearly moving values.


The publisher of a magazine wants to determine the rate of increase in the number of subscribers. The following table shows the subscription information for eight consecutive years:

Years 1976 1977 1978 1979
No. of subscribers
(in millions)
12 11 19 17
Years 1980 1981 1982 1983
No. of subscribers
(in millions)
19 18 20 23

Fit a trend line by graphical method.


Fit a trend line to the following data by the method of least square :

Year 1980 1985 1990 1995 2000 2005 2010
IMR 10 7 5 4 3 1 0

Complete the following activity to fit a trend line to the following data by the method of least squares.

Year 1975 1976 1977 1978 1979 1980 1981 1982 1983
Number of deaths 0 6 3 8 2 9 4 5 10

Solution:

Here n = 9. We transform year t to u by taking u = t - 1979. We construct the following table for calculation :

Year t Number of deaths xt u = t - 1979 u2 uxt
1975 0 - 4 16 0
1976 6 - 3 9 - 18
1977 3 - 2 4 - 6
1978 8 - 1 1 - 8
1979 2 0 0 0
1980 9 1 1 9
1981 4 2 4 8
1982 5 3 9 15
1983 10 4 16 40
  `sumx_t` =47 `sumu`=0 `sumu^2=60` `square`

The equation of trend line is xt= a' + b'u.

The normal equations are,

`sumx_t = na^' + b^' sumu`              ...(1)

`sumux_t = a^'sumu + b^'sumu^2`      ...(2)

Here, n = 9, `sumx_t = 47, sumu= 0, sumu^2 = 60`

By putting these values in normal equations, we get

47 = 9a' + b' (0)       ...(3)

40 = a'(0) + b'(60)      ...(4)

From equation (3), we get a' = `square`

From equation (4), we get b' = `square`

∴ the equation of trend line is xt = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×