Advertisements
Advertisements
प्रश्न
Solve the following problem :
Fit a trend line to data in Problem 16 by the method of least squares.
उत्तर
In the given problem, n = 7 (odd), middle t – value is 1995, h = 5
u = `"t - middle value"/"h" = ("t" - 1995)/(1)`
We obtain the following table.
Year t |
Infant mortality rate yt |
u = `("t" - 1995)/(5)` | u2 | uyt | Trend Value |
1980 | 10 | –3 | 9 | –30 | 8.9999 |
1985 | 7 | –2 | 4 | –14 | 7.4285 |
1990 | 5 | –1 | 1 | –5 | 5.8571 |
1995 | 4 | 0 | 0 | 0 | 4.2857 |
2000 | 3 | 1 | 1 | 3 | 2.7143 |
2005 | 1 | 2 | 4 | 2 | 1.1429 |
2010 | 0 | 3 | 9 | 0 | –0.4285 |
Total | 30 | 0 | 28 | –44 |
From the table, n = 7, `sumy_"t" = 10, sumu = 0, sumu^2 = 28,sumuy_"t" = – 44`
The two normal equations are: `sumy_"t" = "na"' + "b"' sumu "and" sumuy_"t", = a'sumu + b'sumu^2`
∴ 30 = 7a' + b'(0) ...(i) and
– 44 = a'(0) + b'(28) ...(ii)
From (i), a' = `(30)/(7)` = 4.2857
From (ii), b' = `(-44)/(28)` = 1.5714
∴ The equation of the trend line is yt = a' + b'u
i.e., yt = 4.2857 – 1.5714 u, where u = `("t" - 1995)/(5)`.
APPEARS IN
संबंधित प्रश्न
Obtain the trend line for the above data using 5 yearly moving averages.
The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production (Million Barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 8 | 9 | 10 |
i. Obtain trend values for the above data using 5-yearly moving averages.
ii. Plot the original time series and trend values obtained above on the same graph.
Choose the correct alternative :
We can use regression line for past data to forecast future data. We then use the line which_______.
Choose the correct alternative :
Which of the following is a major problem for forecasting, especially when using the method of least squares?
The simplest method of measuring trend of time series is ______.
Fill in the blank :
The method of measuring trend of time series using only averages is _______
Solve the following problem :
The following table shows the production of pig-iron and ferro- alloys (‘000 metric tonnes)
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Following table shows the amount of sugar production (in lac tonnes) for the years 1971 to 1982.
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 1 | 0 | 1 | 2 | 3 | 2 | 3 | 6 | 5 | 1 | 4 | 10 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
The percentage of girls’ enrollment in total enrollment for years 1960-2005 is shown in the following table.
Year | 1960 | 1965 | 1970 | 1975 | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 |
Percentage | 0 | 3 | 3 | 4 | 4 | 5 | 6 | 8 | 8 | 10 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Obtain trend values for data in Problem 10 using 3-yearly moving averages.
Solve the following problem :
Obtain trend values for data in Problem 13 using 4-yearly moving averages.
Choose the correct alternative:
Moving averages are useful in identifying ______.
State whether the following statement is True or False:
Least squares method of finding trend is very simple and does not involve any calculations
Obtain the trend values for the data, using 3-yearly moving averages
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 |
Production | 0 | 4 | 4 | 2 | 6 | 8 |
Year | 1982 | 1983 | 1984 | 1985 | 1986 | |
Production | 5 | 9 | 4 | 10 | 10 |
The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 |
Production (million barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 |
Year | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | |
Production (million barrels) |
6 | 7 | 8 | 9 | 8 | 9 | 10 |
- Obtain trend values for the above data using 5-yearly moving averages.
- Plot the original time series and trend values obtained above on the same graph.
Obtain the trend values for the following data using 5 yearly moving averages:
Year | 2000 | 2001 | 2002 | 2003 | 2004 |
Production xi |
10 | 15 | 20 | 25 | 30 |
Year | 2005 | 2006 | 2007 | 2008 | 2009 |
Production xi |
35 | 40 | 45 | 50 | 55 |
The following table shows gross capital information (in Crore ₹) for years 1966 to 1975:
Years | 1966 | 1967 | 1968 | 1969 | 1970 |
Gross Capital information | 20 | 25 | 25 | 30 | 35 |
Years | 1971 | 1972 | 1973 | 1974 | 1975 |
Gross Capital information | 30 | 45 | 40 | 55 | 65 |
Obtain trend values using 5-yearly moving values.
The publisher of a magazine wants to determine the rate of increase in the number of subscribers. The following table shows the subscription information for eight consecutive years:
Years | 1976 | 1977 | 1978 | 1979 |
No. of subscribers (in millions) |
12 | 11 | 19 | 17 |
Years | 1980 | 1981 | 1982 | 1983 |
No. of subscribers (in millions) |
19 | 18 | 20 | 23 |
Fit a trend line by graphical method.
Fit a trend line to the following data by the method of least square :
Year | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 |
IMR | 10 | 7 | 5 | 4 | 3 | 1 | 0 |
Complete the following activity to fit a trend line to the following data by the method of least squares.
Year | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
Number of deaths | 0 | 6 | 3 | 8 | 2 | 9 | 4 | 5 | 10 |
Solution:
Here n = 9. We transform year t to u by taking u = t - 1979. We construct the following table for calculation :
Year t | Number of deaths xt | u = t - 1979 | u2 | uxt |
1975 | 0 | - 4 | 16 | 0 |
1976 | 6 | - 3 | 9 | - 18 |
1977 | 3 | - 2 | 4 | - 6 |
1978 | 8 | - 1 | 1 | - 8 |
1979 | 2 | 0 | 0 | 0 |
1980 | 9 | 1 | 1 | 9 |
1981 | 4 | 2 | 4 | 8 |
1982 | 5 | 3 | 9 | 15 |
1983 | 10 | 4 | 16 | 40 |
`sumx_t` =47 | `sumu`=0 | `sumu^2=60` | `square` |
The equation of trend line is xt= a' + b'u.
The normal equations are,
`sumx_t = na^' + b^' sumu` ...(1)
`sumux_t = a^'sumu + b^'sumu^2` ...(2)
Here, n = 9, `sumx_t = 47, sumu= 0, sumu^2 = 60`
By putting these values in normal equations, we get
47 = 9a' + b' (0) ...(3)
40 = a'(0) + b'(60) ...(4)
From equation (3), we get a' = `square`
From equation (4), we get b' = `square`
∴ the equation of trend line is xt = `square`