मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following problem : Obtain trend values for data in Problem 13 using 4-yearly moving averages. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

Obtain trend values for data in Problem 13 using 4-yearly moving averages.

बेरीज

उत्तर

Construct the following table for finding 4-yearly centred moving averages.

Year
t
No. of deaths 
yt
4–yearly moving average 4–yearly moving Averages 2 unit moving total 4–yearly centred moving averages trend value
1975 0        
           
1976 6        
    17 4.25    
1977 3     9 4.5
    19 4.75    
1978 8     10.25 5.125
    22 5.5    
1979 2     11.25 5.625
    23 5.75    
19880 9     1075 5.375
    20 5    
1981 4     12 6
    28 7    
1982 5        
           
1983 10        
shaalaa.com
Measurement of Secular Trend
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Time Series - Miscellaneous Exercise 4 [पृष्ठ ७०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Time Series
Miscellaneous Exercise 4 | Q 4.15 | पृष्ठ ७०

संबंधित प्रश्‍न

Fit a trend line to the data in Problem 4 above by the method of least squares. Also, obtain the trend value for the index of industrial production for the year 1987.


Choose the correct alternative :

Which of the following is a major problem for forecasting, especially when using the method of least squares?


The simplest method of measuring trend of time series is ______.


Solve the following problem :

Obtain trend values for the following data using 5-yearly moving averages.

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10

Solve the following problem :

Following table shows the amount of sugar production (in lac tonnes) for the years 1971 to 1982.

Year 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 1 0 1 2 3 2 3 6 5 1 4 10

Fit a trend line to the above data by graphical method.


Obtain trend values for the following data using 4-yearly centered moving averages.

Year 1971 1972 1973 1974 1975 1976
Production 1 0 1 2 3 2
Year 1977 1978 1979 1980 1981 1982
Production 3 6 5 1 4 10

Solve the following problem :

Fit a trend line to data in Problem 13 by the method of least squares.


Solve the following problem :

Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010.

Year 1980 1985 1990 1995 2000 2005 2010
IMR 10 7 5 4 3 1 0

Fit a trend line to the above data by graphical method.


Solve the following problem :

Obtain trend values for data in Problem 16 using 3-yearly moving averages.


Obtain trend values for data in Problem 19 using 3-yearly moving averages.


Solve the following problem :

Following tables shows the wheat yield (‘000 tonnes) in India for years 1959 to 1968.

Year 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
Yield 0 1 2 3 1 0 4 1 2 10

Fit a trend line to the above data by the method of least squares.


Following table shows the amount of sugar production (in lac tons) for the years 1971 to 1982

Year 1971 1972 1973 1974 1975 1976
Production 1 0 1 2 3 2
Year 1977 1978 1979 1980 1981 1982
Production 4 6 5 1 4 10

Fit a trend line by the method of least squares


Obtain trend values for data, using 4-yearly centred moving averages

Year 1971 1972 1973 1974 1975 1976
Production 1 0 1 2 3 2
Year 1977 1978 1979 1980 1981 1982
Production 4 6 5 1 4 10

The following table gives the production of steel (in millions of tons) for years 1976 to 1986.

Year 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
Production 0 4 4 2 6 8 5 9 4 10 10

Obtain the trend value for the year 1990


Obtain the trend values for the data, using 3-yearly moving averages

Year 1976 1977 1978 1979 1980 1981
Production 0 4 4 2 6 8
Year 1982 1983 1984 1985 1986  
Production 5 9 4 10 10  

Fit equation of trend line for the data given below.

Year Production (y) x x2 xy
2006 19 – 9 81 – 171
2007 20 – 7 49 – 140
2008 14 – 5 25 – 70
2009 16 – 3 9 – 48
2010 17 – 1 1 – 17
2011 16 1 1 16
2012 18 3 9 54
2013 17 5 25 85
2014 21 7 49 147
2015 19 9 81 171
Total 177 0 330 27

Let the equation of trend line be y = a + bx   .....(i)

Here n = `square` (even), two middle years are `square` and 2011, and h = `square`

The normal equations are Σy = na + bΣx

As Σx = 0, a = `square`

Also, Σxy = aΣx + bΣx2

As Σx = 0, b = `square`

Substitute values of a and b in equation (i) the equation of trend line is `square`

To find trend value for the year 2016, put x = `square` in the above equation.

y = `square`


Following table gives the number of road accidents (in thousands) due to overspeeding in Maharashtra for 9 years. Complete the following activity to find the trend by the method of least squares.

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016
Number of accidents 39 18 21 28 27 27 23 25 22

Solution:

We take origin to 18, we get, the number of accidents as follows:

Year Number of accidents xt t u = t - 5 u2 u.xt
2008 21 1 -4 16 -84
2009 0 2 -3 9 0
2010 3 3 -2 4 -6
2011 10 4 -1 1 -10
2012 9 5 0 0 0
2013 9 6 1 1 9
2014 5 7 2 4 10
2015 7 8 3 9 21
2016 4 9 4 16 16
  `sumx_t=68` - `sumu=0` `sumu^2=60` `square`

The equation of trend is xt =a'+ b'u.

The normal equations are,

`sumx_t=na^'+b^'sumu             ...(1)`

`sumux_t=a^'sumu+b^'sumu^2      ...(2)`

Here, n = 9, `sumx_t=68,sumu=0,sumu^2=60,sumux_t=-44`

Putting these values in normal equations, we get

68 = 9a' + b'(0)     ...(3)

∴ a' = `square`

-44 = a'(0) + b'(60)          ...(4)

∴ b' = `square`

The equation of trend line is given by

xt = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×