Advertisements
Advertisements
प्रश्न
Fit a trend line to the data in Problem 4 above by the method of least squares. Also, obtain the trend value for the index of industrial production for the year 1987.
उत्तर
In the given problem, x = 10(even), two middle t – values are 1980 and 1981, h = 1
u = `"t - mean of two middle values"/("h"/(2)) = ("t" - 1980.5)/(1/2)` = 2(t – 1980.5)
We obtain the following table.
Year (t) | Index of industrial production yt | u = 2 (t - 1980.5) |
u2 | uyt | Trend value |
1976 | 0 | –9 | 81 | 0 | 0.1635 |
1977 | 2 | –7 | 49 | –14 | 1.0605 |
1978 | 3 | –5 | 25 | –15 | 1.9575 |
1979 | 3 | –3 | 9 | –9 | 2.8545 |
1980 | 2 | –1 | 1 | –2 | 3.7515 |
1981 | 4 | 1 | 1 | 4 | 4.6485 |
1982 | 5 | 3 | 9 | 15 | 5.5455 |
1983 | 6 | 5 | 25 | 30 | 6.4425 |
1984 | 7 | 7 | 49 | 49 | 7.3395 |
1985 | 10 | 9 | 81 | 90 | 8.2365 |
Total | 42 | 0 | 330 | 148 |
From the table, n = 10, `sumy_"t" = 42, sumu = 0, sumu^2 = 330, sumuy_"t" = 148`
The two normal equations are : `sumy_"t" = "na"' + "b"' sumu "and" sumuy_"t" = "a"' sumu + "b"'sumu^2`
∴ 42 = 10a' + b'(0) ...(i) and
148 = a'(0) + b'(330) ...(ii)
From (i), a' = `(42)/(10)` = 4.2
From (ii), b' = `(148)/(330)` = 0.4485
∴ The equation of the trend line is yt = a' + b'u
i.e., yt = 4.2 + 0.4485 u, where u = 2(t – 1980.5)
∴ Now, For t = 1987, u = 2(1987 – 1980.5) = 2 x 6.5 = 13
∴ yt = 4.2 + 0.4485 x 13 = 10.0305.
APPEARS IN
संबंधित प्रश्न
The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production (Million Barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 8 | 9 | 10 |
i. Obtain trend values for the above data using 5-yearly moving averages.
ii. Plot the original time series and trend values obtained above on the same graph.
Choose the correct alternative :
Which of the following is a major problem for forecasting, especially when using the method of least squares?
State whether the following is True or False :
Least squares method of finding trend is very simple and does not involve any calculations.
Solve the following problem :
Obtain trend values for the following data using 5-yearly moving averages.
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
Solve the following problem :
Following table shows the amount of sugar production (in lac tonnes) for the years 1971 to 1982.
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 1 | 0 | 1 | 2 | 3 | 2 | 3 | 6 | 5 | 1 | 4 | 10 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Fit a trend line to data in Problem 4 by the method of least squares.
Solve the following problem :
Fit a trend line to the data in Problem 7 by the method of least squares.
Solve the following problem :
Obtain trend values for the data in Problem 7 using 4-yearly moving averages.
Solve the following problem :
Following data shows the number of boxes of cereal sold in years 1977 to 1984.
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
No. of boxes in ten thousand | 1 | 0 | 3 | 8 | 10 | 4 | 5 | 8 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Obtain trend values for data in Problem 16 using 3-yearly moving averages.
State whether the following statement is True or False:
The secular trend component of time series represents irregular variations
State whether the following statement is True or False:
Moving average method of finding trend is very complicated and involves several calculations
Following table shows the amount of sugar production (in lac tons) for the years 1971 to 1982
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production | 1 | 0 | 1 | 2 | 3 | 2 |
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 4 | 6 | 5 | 1 | 4 | 10 |
Fit a trend line by the method of least squares
The following table gives the production of steel (in millions of tons) for years 1976 to 1986.
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
Production | 0 | 4 | 4 | 2 | 6 | 8 | 5 | 9 | 4 | 10 | 10 |
Obtain the trend value for the year 1990
Use the method of least squares to fit a trend line to the data given below. Also, obtain the trend value for the year 1975.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 |
Production (million barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 |
Year | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | |
Production (million barrels) |
6 | 8 | 9 | 9 | 8 | 7 | 10 |
Fit a trend line to the following data by the method of least square :
Year | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 |
IMR | 10 | 7 | 5 | 4 | 3 | 1 | 0 |
Following table gives the number of road accidents (in thousands) due to overspeeding in Maharashtra for 9 years. Complete the following activity to find the trend by the method of least squares.
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
Number of accidents | 39 | 18 | 21 | 28 | 27 | 27 | 23 | 25 | 22 |
Solution:
We take origin to 18, we get, the number of accidents as follows:
Year | Number of accidents xt | t | u = t - 5 | u2 | u.xt |
2008 | 21 | 1 | -4 | 16 | -84 |
2009 | 0 | 2 | -3 | 9 | 0 |
2010 | 3 | 3 | -2 | 4 | -6 |
2011 | 10 | 4 | -1 | 1 | -10 |
2012 | 9 | 5 | 0 | 0 | 0 |
2013 | 9 | 6 | 1 | 1 | 9 |
2014 | 5 | 7 | 2 | 4 | 10 |
2015 | 7 | 8 | 3 | 9 | 21 |
2016 | 4 | 9 | 4 | 16 | 16 |
`sumx_t=68` | - | `sumu=0` | `sumu^2=60` | `square` |
The equation of trend is xt =a'+ b'u.
The normal equations are,
`sumx_t=na^'+b^'sumu ...(1)`
`sumux_t=a^'sumu+b^'sumu^2 ...(2)`
Here, n = 9, `sumx_t=68,sumu=0,sumu^2=60,sumux_t=-44`
Putting these values in normal equations, we get
68 = 9a' + b'(0) ...(3)
∴ a' = `square`
-44 = a'(0) + b'(60) ...(4)
∴ b' = `square`
The equation of trend line is given by
xt = `square`