मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Fit a trend line to the data in Problem 4 above by the method of least squares. Also, obtain the trend value for the index of industrial production for the year 1987. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Fit a trend line to the data in Problem 4 above by the method of least squares. Also, obtain the trend value for the index of industrial production for the year 1987.

बेरीज

उत्तर

In the given problem, x = 10(even), two middle t – values are 1980 and 1981, h = 1

u = `"t - mean of two middle values"/("h"/(2)) = ("t" - 1980.5)/(1/2)` = 2(t – 1980.5)

We obtain the following table.

Year (t) Index of industrial production yt u = 2
(t - 1980.5)
u2 uyt Trend value
1976 0 –9 81 0 0.1635
1977 2 –7 49 –14 1.0605
1978 3 –5 25 –15 1.9575
1979 3 –3 9 –9 2.8545
1980 2 –1 1 –2 3.7515
1981 4 1 1 4 4.6485
1982 5 3 9 15 5.5455
1983 6 5 25 30 6.4425
1984 7 7 49 49 7.3395
1985 10 9 81 90 8.2365
Total 42 0 330 148  

From the table, n = 10, `sumy_"t" = 42, sumu = 0, sumu^2 = 330, sumuy_"t" = 148`

The two normal equations are : `sumy_"t" = "na"' + "b"' sumu  "and" sumuy_"t" = "a"' sumu + "b"'sumu^2`

∴ 42 = 10a' + b'(0)        ...(i)   and
148 = a'(0) + b'(330)    ...(ii)

From (i), a' = `(42)/(10)` = 4.2

From (ii), b' = `(148)/(330)` = 0.4485
∴ The equation of the trend line is yt = a' + b'u
i.e., yt = 4.2 + 0.4485 u, where u = 2(t – 1980.5)
∴ Now, For t = 1987, u = 2(1987 – 1980.5) = 2 x 6.5 = 13
∴ yt = 4.2 + 0.4485 x 13 = 10.0305.

shaalaa.com
Measurement of Secular Trend
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Time Series - Exercise 4.1 [पृष्ठ ६६]

APPEARS IN

संबंधित प्रश्‍न

The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.

Year 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
Production
(Million Barrels)
0 0 1 1 2 3 4 5 6 7 8 9 8 9 10

i. Obtain trend values for the above data using 5-yearly moving averages.
ii. Plot the original time series and trend values obtained above on the same graph.


Choose the correct alternative :

Which of the following is a major problem for forecasting, especially when using the method of least squares?


State whether the following is True or False :

Least squares method of finding trend is very simple and does not involve any calculations.


Solve the following problem :

Obtain trend values for the following data using 5-yearly moving averages.

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10

Solve the following problem :

Following table shows the amount of sugar production (in lac tonnes) for the years 1971 to 1982.

Year 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 1 0 1 2 3 2 3 6 5 1 4 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

Fit a trend line to data in Problem 4 by the method of least squares.


Solve the following problem :

Fit a trend line to the data in Problem 7 by the method of least squares.


Solve the following problem :

Obtain trend values for the data in Problem 7 using 4-yearly moving averages.


Solve the following problem :

Following data shows the number of boxes of cereal sold in years 1977 to 1984.

Year 1977 1978 1979 1980 1981 1982 1983 1984
No. of boxes in ten thousand 1 0 3 8 10 4 5 8

Fit a trend line to the above data by graphical method.


Solve the following problem :

Obtain trend values for data in Problem 16 using 3-yearly moving averages.


State whether the following statement is True or False:

The secular trend component of time series represents irregular variations


State whether the following statement is True or False: 

Moving average method of finding trend is very complicated and involves several calculations


Following table shows the amount of sugar production (in lac tons) for the years 1971 to 1982

Year 1971 1972 1973 1974 1975 1976
Production 1 0 1 2 3 2
Year 1977 1978 1979 1980 1981 1982
Production 4 6 5 1 4 10

Fit a trend line by the method of least squares


The following table gives the production of steel (in millions of tons) for years 1976 to 1986.

Year 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
Production 0 4 4 2 6 8 5 9 4 10 10

Obtain the trend value for the year 1990


Use the method of least squares to fit a trend line to the data given below. Also, obtain the trend value for the year 1975.

Year 1962 1963 1964 1965 1966 1967 1968 1969
Production
(million barrels)
0 0 1 1 2 3 4 5
Year 1970 1971 1972 1973 1974 1975 1976  
Production
(million barrels)
6 8 9 9 8 7 10  

Fit a trend line to the following data by the method of least square :

Year 1980 1985 1990 1995 2000 2005 2010
IMR 10 7 5 4 3 1 0

Following table gives the number of road accidents (in thousands) due to overspeeding in Maharashtra for 9 years. Complete the following activity to find the trend by the method of least squares.

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016
Number of accidents 39 18 21 28 27 27 23 25 22

Solution:

We take origin to 18, we get, the number of accidents as follows:

Year Number of accidents xt t u = t - 5 u2 u.xt
2008 21 1 -4 16 -84
2009 0 2 -3 9 0
2010 3 3 -2 4 -6
2011 10 4 -1 1 -10
2012 9 5 0 0 0
2013 9 6 1 1 9
2014 5 7 2 4 10
2015 7 8 3 9 21
2016 4 9 4 16 16
  `sumx_t=68` - `sumu=0` `sumu^2=60` `square`

The equation of trend is xt =a'+ b'u.

The normal equations are,

`sumx_t=na^'+b^'sumu             ...(1)`

`sumux_t=a^'sumu+b^'sumu^2      ...(2)`

Here, n = 9, `sumx_t=68,sumu=0,sumu^2=60,sumux_t=-44`

Putting these values in normal equations, we get

68 = 9a' + b'(0)     ...(3)

∴ a' = `square`

-44 = a'(0) + b'(60)          ...(4)

∴ b' = `square`

The equation of trend line is given by

xt = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×