English

Fit a trend line to the data in Problem 4 above by the method of least squares. Also, obtain the trend value for the index of industrial production for the year 1987. - Mathematics and Statistics

Advertisements
Advertisements

Question

Fit a trend line to the data in Problem 4 above by the method of least squares. Also, obtain the trend value for the index of industrial production for the year 1987.

Sum

Solution

In the given problem, x = 10(even), two middle t – values are 1980 and 1981, h = 1

u = `"t - mean of two middle values"/("h"/(2)) = ("t" - 1980.5)/(1/2)` = 2(t – 1980.5)

We obtain the following table.

Year (t) Index of industrial production yt u = 2
(t - 1980.5)
u2 uyt Trend value
1976 0 –9 81 0 0.1635
1977 2 –7 49 –14 1.0605
1978 3 –5 25 –15 1.9575
1979 3 –3 9 –9 2.8545
1980 2 –1 1 –2 3.7515
1981 4 1 1 4 4.6485
1982 5 3 9 15 5.5455
1983 6 5 25 30 6.4425
1984 7 7 49 49 7.3395
1985 10 9 81 90 8.2365
Total 42 0 330 148  

From the table, n = 10, `sumy_"t" = 42, sumu = 0, sumu^2 = 330, sumuy_"t" = 148`

The two normal equations are : `sumy_"t" = "na"' + "b"' sumu  "and" sumuy_"t" = "a"' sumu + "b"'sumu^2`

∴ 42 = 10a' + b'(0)        ...(i)   and
148 = a'(0) + b'(330)    ...(ii)

From (i), a' = `(42)/(10)` = 4.2

From (ii), b' = `(148)/(330)` = 0.4485
∴ The equation of the trend line is yt = a' + b'u
i.e., yt = 4.2 + 0.4485 u, where u = 2(t – 1980.5)
∴ Now, For t = 1987, u = 2(1987 – 1980.5) = 2 x 6.5 = 13
∴ yt = 4.2 + 0.4485 x 13 = 10.0305.

shaalaa.com
Measurement of Secular Trend
  Is there an error in this question or solution?
Chapter 4: Time Series - Exercise 4.1 [Page 66]

RELATED QUESTIONS

Obtain the trend values for the above data using 3-yearly moving averages.


Fill in the blank :

The complicated but efficient method of measuring trend of time series is _______.


State whether the following is True or False :

Graphical method of finding trend is very complicated and involves several calculations.


State whether the following is True or False :

Least squares method of finding trend is very simple and does not involve any calculations.


Solve the following problem :

Fit a trend line to data in Problem 4 by the method of least squares.


Solve the following problem :

The percentage of girls’ enrollment in total enrollment for years 1960-2005 is shown in the following table.

Year 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
Percentage 0 3 3 4 4 5 6 8 8 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

Fit a trend line to data by the method of least squares.

Year 1977 1978 1979 1980 1981 1982 1983 1984
Number of boxes (in ten thousands) 1 0 3 8 10 4 5 8

Solve the following problem :

Following table shows the number of traffic fatalities (in a state) resulting from drunken driving for years 1975 to 1983.

Year 1975 1976 1977 1978 1979 1980 1981 1982 1983
No. of deaths 0 6 3 8 2 9 4 5 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

Obtain trend values for data in Problem 13 using 4-yearly moving averages.


Solve the following problem :

Fit a trend line to data in Problem 16 by the method of least squares.


Solve the following problem :

Obtain trend values for data in Problem 16 using 3-yearly moving averages.


Obtain trend values for data in Problem 19 using 3-yearly moving averages.


Solve the following problem :

Following tables shows the wheat yield (‘000 tonnes) in India for years 1959 to 1968.

Year 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
Yield 0 1 2 3 1 0 4 1 2 10

Fit a trend line to the above data by the method of least squares.


The complicated but efficient method of measuring trend of time series is ______


Obtain trend values for data, using 3-yearly moving averages
Solution:

Year IMR 3 yearly
moving total
3-yearly moving
average

(trend value)
1980 10
1985 7 `square` 7.33
1990 5 16 `square`
1995 4 12 4
2000 3 8 `square`
2005 1 `square` 1.33
2010 0

Fit equation of trend line for the data given below.

Year Production (y) x x2 xy
2006 19 – 9 81 – 171
2007 20 – 7 49 – 140
2008 14 – 5 25 – 70
2009 16 – 3 9 – 48
2010 17 – 1 1 – 17
2011 16 1 1 16
2012 18 3 9 54
2013 17 5 25 85
2014 21 7 49 147
2015 19 9 81 171
Total 177 0 330 27

Let the equation of trend line be y = a + bx   .....(i)

Here n = `square` (even), two middle years are `square` and 2011, and h = `square`

The normal equations are Σy = na + bΣx

As Σx = 0, a = `square`

Also, Σxy = aΣx + bΣx2

As Σx = 0, b = `square`

Substitute values of a and b in equation (i) the equation of trend line is `square`

To find trend value for the year 2016, put x = `square` in the above equation.

y = `square`


Fit a trend line to the following data by the method of least square :

Year 1980 1985 1990 1995 2000 2005 2010
IMR 10 7 5 4 3 1 0

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×