Advertisements
Advertisements
Question
Solve the following problem :
Fit a trend line to data by the method of least squares.
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
Number of boxes (in ten thousands) | 1 | 0 | 3 | 8 | 10 | 4 | 5 | 8 |
Solution
In the given problem, n = 8 (even), two middle t – values are 1980 and 1981, h – 1
u = `"t - mean of two middle values"/("h"/2) = ("t" - 1980.5)/(1/2)` = 2(t – 1980.5)
We obtain the following table.
Year t |
No. of boxes (in ten thousands) yt |
u = 2(t – 1980.5) | u2 | uyt | Trend Value |
1977 | 1 | –7 | 49 | –7 | 1.5836 |
1978 | 0 | –5 | 25 | 0 | 2.5240 |
1979 | 3 | –3 | 9 | –9 | 3.4644 |
1980 | 8 | –1 | 1 | –8 | 4.4048 |
1981 | 10 | 1 | 1 | 10 | 5.3452 |
1982 | 4 | 3 | 9 | 12 | 6.2856 |
1983 | 5 | 5 | 25 | 25 | 7.2260 |
1984 | 8 | 7 | 49 | 56 | 8.1664 |
Total | 39 | 0 | 168 | 79 |
From the table, n = 8, `sumy_"t" = 39, sumu = 0, sumu^2 = 168,sumuy_"t" = 79`
The two normal equations are: `sumy_"t" = "na"' + "b"' sumu "and" sumuy_"t", = a'sumu + b'sumu^2`
∴ 39 = 8a' + b'(0) ...(i) and
79 = a'(0) + b'(168) ...(ii)
From (i), a' = `(39)/(8)` = 4.875
From (ii), b' = `(79)/(168)` = 0.4702
∴ The equation of the trend line is yt = a' + b'u
i.e., yt = 4.875 + 0.4702 u, where u = 2(t – 1980.5).
APPEARS IN
RELATED QUESTIONS
Obtain the trend line for the above data using 5 yearly moving averages.
Fit a trend line to the data in Problem 4 above by the method of least squares. Also, obtain the trend value for the index of industrial production for the year 1987.
Obtain the trend values for the data in using 4-yearly centered moving averages.
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
Index | 0 | 2 | 3 | 3 | 2 | 4 | 5 | 6 | 7 | 10 |
Fit a trend line to the data in Problem 7 by the method of least squares. Also, obtain the trend value for the year 1990.
State whether the following is True or False :
Graphical method of finding trend is very complicated and involves several calculations.
State whether the following is True or False :
Moving average method of finding trend is very complicated and involves several calculations.
State whether the following is True or False :
All the three methods of measuring trend will always give the same results.
Solve the following problem :
Following table shows the amount of sugar production (in lac tonnes) for the years 1971 to 1982.
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 1 | 0 | 1 | 2 | 3 | 2 | 3 | 6 | 5 | 1 | 4 | 10 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Following data shows the number of boxes of cereal sold in years 1977 to 1984.
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
No. of boxes in ten thousand | 1 | 0 | 3 | 8 | 10 | 4 | 5 | 8 |
Fit a trend line to the above data by graphical method.
The complicated but efficient method of measuring trend of time series is ______
State whether the following statement is True or False:
The secular trend component of time series represents irregular variations
Following table shows the amount of sugar production (in lac tons) for the years 1971 to 1982
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production | 1 | 0 | 1 | 2 | 3 | 2 |
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 4 | 6 | 5 | 1 | 4 | 10 |
Fit a trend line by the method of least squares
Obtain the trend values for the data, using 3-yearly moving averages
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 |
Production | 0 | 4 | 4 | 2 | 6 | 8 |
Year | 1982 | 1983 | 1984 | 1985 | 1986 | |
Production | 5 | 9 | 4 | 10 | 10 |
Fit equation of trend line for the data given below.
Year | Production (y) | x | x2 | xy |
2006 | 19 | – 9 | 81 | – 171 |
2007 | 20 | – 7 | 49 | – 140 |
2008 | 14 | – 5 | 25 | – 70 |
2009 | 16 | – 3 | 9 | – 48 |
2010 | 17 | – 1 | 1 | – 17 |
2011 | 16 | 1 | 1 | 16 |
2012 | 18 | 3 | 9 | 54 |
2013 | 17 | 5 | 25 | 85 |
2014 | 21 | 7 | 49 | 147 |
2015 | 19 | 9 | 81 | 171 |
Total | 177 | 0 | 330 | 27 |
Let the equation of trend line be y = a + bx .....(i)
Here n = `square` (even), two middle years are `square` and 2011, and h = `square`
The normal equations are Σy = na + bΣx
As Σx = 0, a = `square`
Also, Σxy = aΣx + bΣx2
As Σx = 0, b = `square`
Substitute values of a and b in equation (i) the equation of trend line is `square`
To find trend value for the year 2016, put x = `square` in the above equation.
y = `square`
Complete the table using 4 yearly moving average method.
Year | Production | 4 yearly moving total |
4 yearly centered total |
4 yearly centered moving average (trend values) |
2006 | 19 | – | – | |
`square` | ||||
2007 | 20 | – | `square` | |
72 | ||||
2008 | 17 | 142 | 17.75 | |
70 | ||||
2009 | 16 | `square` | 17 | |
`square` | ||||
2010 | 17 | 133 | `square` | |
67 | ||||
2011 | 16 | `square` | `square` | |
`square` | ||||
2012 | 18 | 140 | 17.5 | |
72 | ||||
2013 | 17 | 147 | 18.375 | |
75 | ||||
2014 | 21 | – | – | |
– | ||||
2015 | 19 | – | – |
The following table shows gross capital information (in Crore ₹) for years 1966 to 1975:
Years | 1966 | 1967 | 1968 | 1969 | 1970 |
Gross Capital information | 20 | 25 | 25 | 30 | 35 |
Years | 1971 | 1972 | 1973 | 1974 | 1975 |
Gross Capital information | 30 | 45 | 40 | 55 | 65 |
Obtain trend values using 5-yearly moving values.
Fit a trend line to the following data by the method of least square :
Year | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 |
IMR | 10 | 7 | 5 | 4 | 3 | 1 | 0 |