English

Solve the following problem : Fit a trend line to data by the method of least squares. Year 1977 1978 1979 1980 1981 1982 1983 1984 Number of boxes (in ten thousands) 1 0 3 8 10 4 5 8 - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following problem :

Fit a trend line to data by the method of least squares.

Year 1977 1978 1979 1980 1981 1982 1983 1984
Number of boxes (in ten thousands) 1 0 3 8 10 4 5 8
Sum

Solution

In the given problem, n = 8 (even), two middle t – values are 1980 and 1981, h – 1

u = `"t - mean of two middle values"/("h"/2) = ("t" - 1980.5)/(1/2)` = 2(t – 1980.5)

We obtain the following table.

Year
t
No. of boxes (in ten thousands) 
yt
u = 2(t –  1980.5) u2 uyt Trend Value
1977 1 –7 49 –7 1.5836
1978 0 –5 25 0 2.5240
1979 3 –3 9 –9 3.4644
1980 8 –1 1 –8 4.4048
1981 10 1 1 10 5.3452
1982 4 3 9 12 6.2856
1983 5 5 25 25 7.2260
1984 8 7 49 56 8.1664
Total 39 0 168 79  

From the table, n = 8, `sumy_"t" = 39, sumu = 0, sumu^2 = 168,sumuy_"t" = 79`

The two normal equations are: `sumy_"t" = "na"' + "b"' sumu  "and" sumuy_"t", = a'sumu + b'sumu^2`

∴ 39 = 8a' + b'(0)            ...(i)   and
79 = a'(0) + b'(168)         ...(ii)

From (i), a' = `(39)/(8)` = 4.875

From (ii), b' = `(79)/(168)` = 0.4702
∴  The equation of the trend line is yt = a' + b'u
i.e., yt = 4.875 + 0.4702 u, where u = 2(t – 1980.5).

shaalaa.com
Measurement of Secular Trend
  Is there an error in this question or solution?
Chapter 4: Time Series - Miscellaneous Exercise 4 [Page 70]

APPEARS IN

RELATED QUESTIONS

Obtain the trend line for the above data using 5 yearly moving averages.


Fit a trend line to the data in Problem 4 above by the method of least squares. Also, obtain the trend value for the index of industrial production for the year 1987.


Obtain the trend values for the data in using 4-yearly centered moving averages.

Year 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
Index 0 2 3 3 2 4 5 6 7 10

Fit a trend line to the data in Problem 7 by the method of least squares. Also, obtain the trend value for the year 1990.


State whether the following is True or False :

Graphical method of finding trend is very complicated and involves several calculations.


State whether the following is True or False :

Moving average method of finding trend is very complicated and involves several calculations.


State whether the following is True or False :

All the three methods of measuring trend will always give the same results.


Solve the following problem :

Following table shows the amount of sugar production (in lac tonnes) for the years 1971 to 1982.

Year 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 1 0 1 2 3 2 3 6 5 1 4 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

Following data shows the number of boxes of cereal sold in years 1977 to 1984.

Year 1977 1978 1979 1980 1981 1982 1983 1984
No. of boxes in ten thousand 1 0 3 8 10 4 5 8

Fit a trend line to the above data by graphical method.


The complicated but efficient method of measuring trend of time series is ______


State whether the following statement is True or False:

The secular trend component of time series represents irregular variations


Following table shows the amount of sugar production (in lac tons) for the years 1971 to 1982

Year 1971 1972 1973 1974 1975 1976
Production 1 0 1 2 3 2
Year 1977 1978 1979 1980 1981 1982
Production 4 6 5 1 4 10

Fit a trend line by the method of least squares


Obtain the trend values for the data, using 3-yearly moving averages

Year 1976 1977 1978 1979 1980 1981
Production 0 4 4 2 6 8
Year 1982 1983 1984 1985 1986  
Production 5 9 4 10 10  

Fit equation of trend line for the data given below.

Year Production (y) x x2 xy
2006 19 – 9 81 – 171
2007 20 – 7 49 – 140
2008 14 – 5 25 – 70
2009 16 – 3 9 – 48
2010 17 – 1 1 – 17
2011 16 1 1 16
2012 18 3 9 54
2013 17 5 25 85
2014 21 7 49 147
2015 19 9 81 171
Total 177 0 330 27

Let the equation of trend line be y = a + bx   .....(i)

Here n = `square` (even), two middle years are `square` and 2011, and h = `square`

The normal equations are Σy = na + bΣx

As Σx = 0, a = `square`

Also, Σxy = aΣx + bΣx2

As Σx = 0, b = `square`

Substitute values of a and b in equation (i) the equation of trend line is `square`

To find trend value for the year 2016, put x = `square` in the above equation.

y = `square`


Complete the table using 4 yearly moving average method.

Year Production 4 yearly
moving
total
4 yearly
centered
total
4 yearly centered
moving average
(trend values)
2006 19  
    `square`    
2007 20   `square`
    72    
2008 17   142 17.75
    70    
2009 16   `square` 17
    `square`    
2010 17   133 `square`
    67    
2011 16   `square` `square`
    `square`    
2012 18   140 17.5
    72    
2013 17   147 18.375
    75    
2014 21  
       
2015 19  

The following table shows gross capital information (in Crore ₹) for years 1966 to 1975:

Years 1966 1967 1968 1969 1970
Gross Capital information 20 25 25 30 35
Years 1971 1972 1973 1974 1975
Gross Capital information 30 45 40 55 65

Obtain trend values using 5-yearly moving values.


Fit a trend line to the following data by the method of least square :

Year 1980 1985 1990 1995 2000 2005 2010
IMR 10 7 5 4 3 1 0

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×