Advertisements
Advertisements
Questions
Obtain the trend values for the data in using 4-yearly centered moving averages.
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
Index | 0 | 2 | 3 | 3 | 2 | 4 | 5 | 6 | 7 | 10 |
The following table shows the index of industrial production for the period from 1976 to 1985. using the year 1976 as the base year. Obtain the trend values for the following data using 4 yearly centered moving averages:
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
Index | 0 | 2 | 3 | 3 | 2 | 4 | 5 | 6 | 7 | 10 |
Solution
Construct the following table for finding 4 yearly centered moving average
Year t | Index yt | 4–yearly moving total | 4–yearly moving averages | 2 unit moving total |
4 yearly centred moving average (trend values) |
1976 | 0 | ||||
1977 | 2 | 8 | 2 | ||
1978 | 3 | 10 | 2.5 | 4.5 | 2.25 |
1979 | 3 | 12 | 3 | 5.5 | 2.75 |
1980 | 2 | 14 | 3.5 | 6.5 | 3.25 |
1981 | 4 | 17 | 4.25 | 7.75 | 3.875 |
1982 | 5 | 22 | 5.5 | 9.75 | 4.875 |
1983 | 6 | 28 | 7 | 12.5 | 6.25 |
1984 | 7 | ||||
1985 | 10 |
RELATED QUESTIONS
Obtain the trend line for the above data using 5 yearly moving averages.
Fit a trend line to the data in Problem 7 by the method of least squares. Also, obtain the trend value for the year 1990.
Obtain the trend values for the above data using 3-yearly moving averages.
The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production (Million Barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 8 | 9 | 10 |
i. Obtain trend values for the above data using 5-yearly moving averages.
ii. Plot the original time series and trend values obtained above on the same graph.
Choose the correct alternative :
What is a disadvantage of the graphical method of determining a trend line?
The simplest method of measuring trend of time series is ______.
Fill in the blank :
The method of measuring trend of time series using only averages is _______
Fill in the blank :
The complicated but efficient method of measuring trend of time series is _______.
State whether the following is True or False :
Least squares method of finding trend is very simple and does not involve any calculations.
State whether the following is True or False :
All the three methods of measuring trend will always give the same results.
Solve the following problem :
Fit a trend line to data in Problem 4 by the method of least squares.
Solve the following problem :
Obtain trend values for data in Problem 10 using 3-yearly moving averages.
Solve the following problem :
Following table shows the number of traffic fatalities (in a state) resulting from drunken driving for years 1975 to 1983.
Year | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
No. of deaths | 0 | 6 | 3 | 8 | 2 | 9 | 4 | 5 | 10 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Obtain trend values for data in Problem 16 using 3-yearly moving averages.
Solve the following problem :
Following tables shows the wheat yield (‘000 tonnes) in India for years 1959 to 1968.
Year | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 |
Yield | 0 | 1 | 2 | 3 | 1 | 0 | 4 | 1 | 2 | 10 |
Fit a trend line to the above data by the method of least squares.
Choose the correct alternative:
Moving averages are useful in identifying ______.
The method of measuring trend of time series using only averages is ______
State whether the following statement is True or False:
Least squares method of finding trend is very simple and does not involve any calculations
Following table shows the amount of sugar production (in lac tons) for the years 1971 to 1982
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production | 1 | 0 | 1 | 2 | 3 | 2 |
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 4 | 6 | 5 | 1 | 4 | 10 |
Fit a trend line by the method of least squares
Obtain trend values for data, using 4-yearly centred moving averages
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production | 1 | 0 | 1 | 2 | 3 | 2 |
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 4 | 6 | 5 | 1 | 4 | 10 |
The following table gives the production of steel (in millions of tons) for years 1976 to 1986.
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
Production | 0 | 4 | 4 | 2 | 6 | 8 | 5 | 9 | 4 | 10 | 10 |
Obtain the trend value for the year 1990
Obtain the trend values for the data, using 3-yearly moving averages
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 |
Production | 0 | 4 | 4 | 2 | 6 | 8 |
Year | 1982 | 1983 | 1984 | 1985 | 1986 | |
Production | 5 | 9 | 4 | 10 | 10 |
The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 |
Production (million barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 |
Year | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | |
Production (million barrels) |
6 | 7 | 8 | 9 | 8 | 9 | 10 |
- Obtain trend values for the above data using 5-yearly moving averages.
- Plot the original time series and trend values obtained above on the same graph.
The following table shows gross capital information (in Crore ₹) for years 1966 to 1975:
Years | 1966 | 1967 | 1968 | 1969 | 1970 |
Gross Capital information | 20 | 25 | 25 | 30 | 35 |
Years | 1971 | 1972 | 1973 | 1974 | 1975 |
Gross Capital information | 30 | 45 | 40 | 55 | 65 |
Obtain trend values using 5-yearly moving values.
The publisher of a magazine wants to determine the rate of increase in the number of subscribers. The following table shows the subscription information for eight consecutive years:
Years | 1976 | 1977 | 1978 | 1979 |
No. of subscribers (in millions) |
12 | 11 | 19 | 17 |
Years | 1980 | 1981 | 1982 | 1983 |
No. of subscribers (in millions) |
19 | 18 | 20 | 23 |
Fit a trend line by graphical method.
Following table gives the number of road accidents (in thousands) due to overspeeding in Maharashtra for 9 years. Complete the following activity to find the trend by the method of least squares.
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
Number of accidents | 39 | 18 | 21 | 28 | 27 | 27 | 23 | 25 | 22 |
Solution:
We take origin to 18, we get, the number of accidents as follows:
Year | Number of accidents xt | t | u = t - 5 | u2 | u.xt |
2008 | 21 | 1 | -4 | 16 | -84 |
2009 | 0 | 2 | -3 | 9 | 0 |
2010 | 3 | 3 | -2 | 4 | -6 |
2011 | 10 | 4 | -1 | 1 | -10 |
2012 | 9 | 5 | 0 | 0 | 0 |
2013 | 9 | 6 | 1 | 1 | 9 |
2014 | 5 | 7 | 2 | 4 | 10 |
2015 | 7 | 8 | 3 | 9 | 21 |
2016 | 4 | 9 | 4 | 16 | 16 |
`sumx_t=68` | - | `sumu=0` | `sumu^2=60` | `square` |
The equation of trend is xt =a'+ b'u.
The normal equations are,
`sumx_t=na^'+b^'sumu ...(1)`
`sumux_t=a^'sumu+b^'sumu^2 ...(2)`
Here, n = 9, `sumx_t=68,sumu=0,sumu^2=60,sumux_t=-44`
Putting these values in normal equations, we get
68 = 9a' + b'(0) ...(3)
∴ a' = `square`
-44 = a'(0) + b'(60) ...(4)
∴ b' = `square`
The equation of trend line is given by
xt = `square`