Advertisements
Advertisements
Question
Obtain trend values for data, using 4-yearly centred moving averages
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production | 1 | 0 | 1 | 2 | 3 | 2 |
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 4 | 6 | 5 | 1 | 4 | 10 |
Solution
Construct the following table for obtaining 4-yearly centred moving average for the data.
Year t |
Production yt |
4-yearly moving
|
4-yearly moving average | 2 unit moving total | 4-yearly centred moving averages trend value |
1971 | 1 | ||||
1972 | 0 | ||||
4 | 1 | ||||
1973 | 1 | 2.5 | 1.25 | ||
6 | 1.5 | ||||
1974 | 2 | 3..5 | 1.75 | ||
8 | 2 | ||||
1975 | 3 | 4.75 | 2.375 | ||
11 | 2.75 | ||||
1796 | 2 | 6.5 | 3.25 | ||
15 | 3.75 | ||||
1977 | 4 | 8 | 4 | ||
17 | 4.25 | ||||
1978 | 6 | 8.25 | 4.125 | ||
16 | 4 | ||||
1979 | 5 | 8 | 4 | ||
16 | 4 | ||||
1980 | 1 | 9 | 4.5 | ||
20 | 5 | ||||
1981 | 4 | ||||
1982 | 10 |
APPEARS IN
RELATED QUESTIONS
Fit a trend line to the data in Problem 7 by the method of least squares. Also, obtain the trend value for the year 1990.
The simplest method of measuring trend of time series is ______.
Fill in the blank :
The method of measuring trend of time series using only averages is _______
State whether the following is True or False :
Graphical method of finding trend is very complicated and involves several calculations.
Solve the following problem :
Fit a trend line to the data in Problem 7 by the method of least squares.
Solve the following problem :
Obtain trend values for data in Problem 16 using 3-yearly moving averages.
Obtain trend values for data in Problem 19 using 3-yearly moving averages.
Solve the following problem :
Following tables shows the wheat yield (‘000 tonnes) in India for years 1959 to 1968.
Year | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 |
Yield | 0 | 1 | 2 | 3 | 1 | 0 | 4 | 1 | 2 | 10 |
Fit a trend line to the above data by the method of least squares.
State whether the following statement is True or False:
The secular trend component of time series represents irregular variations
State whether the following statement is True or False:
Least squares method of finding trend is very simple and does not involve any calculations
The following table gives the production of steel (in millions of tons) for years 1976 to 1986.
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
Production | 0 | 4 | 4 | 2 | 6 | 8 | 5 | 9 | 4 | 10 | 10 |
Obtain the trend value for the year 1990
The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 |
Production (million barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 |
Year | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | |
Production (million barrels) |
6 | 7 | 8 | 9 | 8 | 9 | 10 |
- Obtain trend values for the above data using 5-yearly moving averages.
- Plot the original time series and trend values obtained above on the same graph.
Obtain trend values for data, using 3-yearly moving averages
Solution:
Year | IMR | 3 yearly moving total |
3-yearly moving average (trend value) |
1980 | 10 | – | – |
1985 | 7 | `square` | 7.33 |
1990 | 5 | 16 | `square` |
1995 | 4 | 12 | 4 |
2000 | 3 | 8 | `square` |
2005 | 1 | `square` | 1.33 |
2010 | 0 | – | – |
Fit equation of trend line for the data given below.
Year | Production (y) | x | x2 | xy |
2006 | 19 | – 9 | 81 | – 171 |
2007 | 20 | – 7 | 49 | – 140 |
2008 | 14 | – 5 | 25 | – 70 |
2009 | 16 | – 3 | 9 | – 48 |
2010 | 17 | – 1 | 1 | – 17 |
2011 | 16 | 1 | 1 | 16 |
2012 | 18 | 3 | 9 | 54 |
2013 | 17 | 5 | 25 | 85 |
2014 | 21 | 7 | 49 | 147 |
2015 | 19 | 9 | 81 | 171 |
Total | 177 | 0 | 330 | 27 |
Let the equation of trend line be y = a + bx .....(i)
Here n = `square` (even), two middle years are `square` and 2011, and h = `square`
The normal equations are Σy = na + bΣx
As Σx = 0, a = `square`
Also, Σxy = aΣx + bΣx2
As Σx = 0, b = `square`
Substitute values of a and b in equation (i) the equation of trend line is `square`
To find trend value for the year 2016, put x = `square` in the above equation.
y = `square`
The following table shows gross capital information (in Crore ₹) for years 1966 to 1975:
Years | 1966 | 1967 | 1968 | 1969 | 1970 |
Gross Capital information | 20 | 25 | 25 | 30 | 35 |
Years | 1971 | 1972 | 1973 | 1974 | 1975 |
Gross Capital information | 30 | 45 | 40 | 55 | 65 |
Obtain trend values using 5-yearly moving values.
Complete the following activity to fit a trend line to the following data by the method of least squares.
Year | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
Number of deaths | 0 | 6 | 3 | 8 | 2 | 9 | 4 | 5 | 10 |
Solution:
Here n = 9. We transform year t to u by taking u = t - 1979. We construct the following table for calculation :
Year t | Number of deaths xt | u = t - 1979 | u2 | uxt |
1975 | 0 | - 4 | 16 | 0 |
1976 | 6 | - 3 | 9 | - 18 |
1977 | 3 | - 2 | 4 | - 6 |
1978 | 8 | - 1 | 1 | - 8 |
1979 | 2 | 0 | 0 | 0 |
1980 | 9 | 1 | 1 | 9 |
1981 | 4 | 2 | 4 | 8 |
1982 | 5 | 3 | 9 | 15 |
1983 | 10 | 4 | 16 | 40 |
`sumx_t` =47 | `sumu`=0 | `sumu^2=60` | `square` |
The equation of trend line is xt= a' + b'u.
The normal equations are,
`sumx_t = na^' + b^' sumu` ...(1)
`sumux_t = a^'sumu + b^'sumu^2` ...(2)
Here, n = 9, `sumx_t = 47, sumu= 0, sumu^2 = 60`
By putting these values in normal equations, we get
47 = 9a' + b' (0) ...(3)
40 = a'(0) + b'(60) ...(4)
From equation (3), we get a' = `square`
From equation (4), we get b' = `square`
∴ the equation of trend line is xt = `square`
Following table gives the number of road accidents (in thousands) due to overspeeding in Maharashtra for 9 years. Complete the following activity to find the trend by the method of least squares.
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
Number of accidents | 39 | 18 | 21 | 28 | 27 | 27 | 23 | 25 | 22 |
Solution:
We take origin to 18, we get, the number of accidents as follows:
Year | Number of accidents xt | t | u = t - 5 | u2 | u.xt |
2008 | 21 | 1 | -4 | 16 | -84 |
2009 | 0 | 2 | -3 | 9 | 0 |
2010 | 3 | 3 | -2 | 4 | -6 |
2011 | 10 | 4 | -1 | 1 | -10 |
2012 | 9 | 5 | 0 | 0 | 0 |
2013 | 9 | 6 | 1 | 1 | 9 |
2014 | 5 | 7 | 2 | 4 | 10 |
2015 | 7 | 8 | 3 | 9 | 21 |
2016 | 4 | 9 | 4 | 16 | 16 |
`sumx_t=68` | - | `sumu=0` | `sumu^2=60` | `square` |
The equation of trend is xt =a'+ b'u.
The normal equations are,
`sumx_t=na^'+b^'sumu ...(1)`
`sumux_t=a^'sumu+b^'sumu^2 ...(2)`
Here, n = 9, `sumx_t=68,sumu=0,sumu^2=60,sumux_t=-44`
Putting these values in normal equations, we get
68 = 9a' + b'(0) ...(3)
∴ a' = `square`
-44 = a'(0) + b'(60) ...(4)
∴ b' = `square`
The equation of trend line is given by
xt = `square`