Advertisements
Advertisements
Question
Solve the following problem :
Following tables shows the wheat yield (‘000 tonnes) in India for years 1959 to 1968.
Year | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 |
Yield | 0 | 1 | 2 | 3 | 1 | 0 | 4 | 1 | 2 | 10 |
Fit a trend line to the above data by the method of least squares.
Solution
In the given problem, n = 10 (even), two middle t – value are 1963 and 1964, h = 1
u = `"t - mean of two middle values"/("h"/2) = ("t" - 1963.5)/(1/2)` = 2(t – 1963.5)
We obtain the following table.
Year t |
Yield (in '000 tonnes) yt |
u = 2(t – 1963.5) | u2 | uyt | Trend Value |
1959 | 0 | –9 | 81 | 0 | –0.1632 |
1960 | 1 | –7 | 49 | –7 | 0.4064 |
1961 | 2 | –5 | 25 | –10 | 0.9760 |
196 | 3 | –3 | 9 | –9 | 1.5456 |
1963 | 1 | –1 | 1 | –1 | 2.1152 |
1964 | 0 | 1 | 1 | 0 | 2.6848 |
1965 | 4 | 3 | 9 | 12 | 3.2544 |
1966 | 1 | 5 | 25 | 5 | 3.8240 |
1967 | 2 | 7 | 49 | 14 | 4.3936 |
1968 | 10 | 9 | 81 | 90 | 4.9632 |
Total | 24 | 0 | 330 | 94 |
From the table, n = 10, `sumy_"t" = 24, sumu = 0, sumu^2 = 330,sumuy_"t" = 94`
The two normal equations are: `sumy_"t" = "na"' + "b"' sumu "and" sumuy_"t", = a'sumu + b'sumu^2`
∴ 24 = 10a' + b'(0) ...(i) and
94 = a'(0) + b'(330) ...(ii)
From (i), a' = `(24)/(10)` = 2.4
From (ii), b' = `(94)/(330)` = 0.2848
∴ The equation of the trend line is yt = a' + b'u
i.e., yt = 2.4 + 0.2848 u, where u = 2(t – 1963.5).
APPEARS IN
RELATED QUESTIONS
Choose the correct alternative :
Which of the following is a major problem for forecasting, especially when using the method of least squares?
Fill in the blank :
The method of measuring trend of time series using only averages is _______
State whether the following is True or False :
Graphical method of finding trend is very complicated and involves several calculations.
Solve the following problem :
The following table shows the production of pig-iron and ferro- alloys (‘000 metric tonnes)
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
Fit a trend line to the above data by graphical method.
Fit a trend line to the following data by the method of least squares.
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
Solve the following problem :
The percentage of girls’ enrollment in total enrollment for years 1960-2005 is shown in the following table.
Year | 1960 | 1965 | 1970 | 1975 | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 |
Percentage | 0 | 3 | 3 | 4 | 4 | 5 | 6 | 8 | 8 | 10 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Obtain trend values for data in Problem 10 using 3-yearly moving averages.
Solve the following problem :
Fit a trend line to data in Problem 13 by the method of least squares.
Solve the following problem :
Fit a trend line to data in Problem 16 by the method of least squares.
Solve the following problem :
Obtain trend values for data in Problem 16 using 3-yearly moving averages.
Choose the correct alternative:
Moving averages are useful in identifying ______.
The complicated but efficient method of measuring trend of time series is ______
The method of measuring trend of time series using only averages is ______
State whether the following statement is True or False:
The secular trend component of time series represents irregular variations
State whether the following statement is True or False:
Moving average method of finding trend is very complicated and involves several calculations
State whether the following statement is True or False:
Least squares method of finding trend is very simple and does not involve any calculations
Obtain trend values for data, using 4-yearly centred moving averages
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production | 1 | 0 | 1 | 2 | 3 | 2 |
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 4 | 6 | 5 | 1 | 4 | 10 |
Obtain the trend values for the data, using 3-yearly moving averages
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 |
Production | 0 | 4 | 4 | 2 | 6 | 8 |
Year | 1982 | 1983 | 1984 | 1985 | 1986 | |
Production | 5 | 9 | 4 | 10 | 10 |
Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010
Year | 1980 | 1985 | 1990 | 1995 |
IMR | 10 | 7 | 5 | 4 |
Year | 2000 | 2005 | 2010 | |
IMR | 3 | 1 | 0 |
Fit a trend line by the method of least squares
Solution: Let us fit equation of trend line for above data.
Let the equation of trend line be y = a + bx .....(i)
Here n = 7(odd), middle year is `square` and h = 5
Year | IMR (y) | x | x2 | x.y |
1980 | 10 | – 3 | 9 | – 30 |
1985 | 7 | – 2 | 4 | – 14 |
1990 | 5 | – 1 | 1 | – 5 |
1995 | 4 | 0 | 0 | 0 |
2000 | 3 | 1 | 1 | 3 |
2005 | 1 | 2 | 4 | 2 |
2010 | 0 | 3 | 9 | 0 |
Total | 30 | 0 | 28 | – 44 |
The normal equations are
Σy = na + bΣx
As, Σx = 0, a = `square`
Also, Σxy = aΣx + bΣx2
As, Σx = 0, b =`square`
∴ The equation of trend line is y = `square`