Advertisements
Advertisements
प्रश्न
Solve the following problem :
Following tables shows the wheat yield (‘000 tonnes) in India for years 1959 to 1968.
Year | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 |
Yield | 0 | 1 | 2 | 3 | 1 | 0 | 4 | 1 | 2 | 10 |
Fit a trend line to the above data by the method of least squares.
उत्तर
In the given problem, n = 10 (even), two middle t – value are 1963 and 1964, h = 1
u = `"t - mean of two middle values"/("h"/2) = ("t" - 1963.5)/(1/2)` = 2(t – 1963.5)
We obtain the following table.
Year t |
Yield (in '000 tonnes) yt |
u = 2(t – 1963.5) | u2 | uyt | Trend Value |
1959 | 0 | –9 | 81 | 0 | –0.1632 |
1960 | 1 | –7 | 49 | –7 | 0.4064 |
1961 | 2 | –5 | 25 | –10 | 0.9760 |
196 | 3 | –3 | 9 | –9 | 1.5456 |
1963 | 1 | –1 | 1 | –1 | 2.1152 |
1964 | 0 | 1 | 1 | 0 | 2.6848 |
1965 | 4 | 3 | 9 | 12 | 3.2544 |
1966 | 1 | 5 | 25 | 5 | 3.8240 |
1967 | 2 | 7 | 49 | 14 | 4.3936 |
1968 | 10 | 9 | 81 | 90 | 4.9632 |
Total | 24 | 0 | 330 | 94 |
From the table, n = 10, `sumy_"t" = 24, sumu = 0, sumu^2 = 330,sumuy_"t" = 94`
The two normal equations are: `sumy_"t" = "na"' + "b"' sumu "and" sumuy_"t", = a'sumu + b'sumu^2`
∴ 24 = 10a' + b'(0) ...(i) and
94 = a'(0) + b'(330) ...(ii)
From (i), a' = `(24)/(10)` = 2.4
From (ii), b' = `(94)/(330)` = 0.2848
∴ The equation of the trend line is yt = a' + b'u
i.e., yt = 2.4 + 0.2848 u, where u = 2(t – 1963.5).
APPEARS IN
संबंधित प्रश्न
Fit a trend line to the data in Problem 4 above by the method of least squares. Also, obtain the trend value for the index of industrial production for the year 1987.
Obtain the trend values for the data in using 4-yearly centered moving averages.
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
Index | 0 | 2 | 3 | 3 | 2 | 4 | 5 | 6 | 7 | 10 |
The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production (Million Barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 8 | 9 | 10 |
i. Obtain trend values for the above data using 5-yearly moving averages.
ii. Plot the original time series and trend values obtained above on the same graph.
Choose the correct alternative :
We can use regression line for past data to forecast future data. We then use the line which_______.
Choose the correct alternative :
Which of the following is a major problem for forecasting, especially when using the method of least squares?
Choose the correct alternative :
What is a disadvantage of the graphical method of determining a trend line?
State whether the following is True or False :
Graphical method of finding trend is very complicated and involves several calculations.
State whether the following is True or False :
All the three methods of measuring trend will always give the same results.
Solve the following problem :
The following table shows the production of pig-iron and ferro- alloys (‘000 metric tonnes)
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Obtain trend values for the following data using 5-yearly moving averages.
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
Solve the following problem :
Fit a trend line to data in Problem 4 by the method of least squares.
Obtain trend values for the following data using 4-yearly centered moving averages.
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production | 1 | 0 | 1 | 2 | 3 | 2 |
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 3 | 6 | 5 | 1 | 4 | 10 |
Solve the following problem :
Obtain trend values for the data in Problem 7 using 4-yearly moving averages.
Solve the following problem :
Obtain trend values for data in Problem 10 using 3-yearly moving averages.
Solve the following problem :
Following table shows the number of traffic fatalities (in a state) resulting from drunken driving for years 1975 to 1983.
Year | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
No. of deaths | 0 | 6 | 3 | 8 | 2 | 9 | 4 | 5 | 10 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Obtain trend values for data in Problem 13 using 4-yearly moving averages.
The following table gives the production of steel (in millions of tons) for years 1976 to 1986.
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
Production | 0 | 4 | 4 | 2 | 6 | 8 | 5 | 9 | 4 | 10 | 10 |
Obtain the trend value for the year 1990
Obtain the trend values for the data, using 3-yearly moving averages
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 |
Production | 0 | 4 | 4 | 2 | 6 | 8 |
Year | 1982 | 1983 | 1984 | 1985 | 1986 | |
Production | 5 | 9 | 4 | 10 | 10 |
Following table shows the amount of sugar production (in lakh tonnes) for the years 1931 to 1941:
Year | Production | Year | Production |
1931 | 1 | 1937 | 8 |
1932 | 0 | 1938 | 6 |
1933 | 1 | 1939 | 5 |
1934 | 2 | 1940 | 1 |
1935 | 3 | 1941 | 4 |
1936 | 2 |
Complete the following activity to fit a trend line by method of least squares:
The following table shows gross capital information (in Crore ₹) for years 1966 to 1975:
Years | 1966 | 1967 | 1968 | 1969 | 1970 |
Gross Capital information | 20 | 25 | 25 | 30 | 35 |
Years | 1971 | 1972 | 1973 | 1974 | 1975 |
Gross Capital information | 30 | 45 | 40 | 55 | 65 |
Obtain trend values using 5-yearly moving values.