हिंदी

Obtain trend values for the following data using 4-yearly centered moving averages. Year 1971 1972 1973 1974 1975 1976 Production 1 0 1 2 3 2 Year 1977 1978 1979 1980 1981 1982 Production 3 6 5 1 4 10 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Obtain trend values for the following data using 4-yearly centered moving averages.

Year 1971 1972 1973 1974 1975 1976
Production 1 0 1 2 3 2
Year 1977 1978 1979 1980 1981 1982
Production 3 6 5 1 4 10
सारिणी
योग

उत्तर

Construct the following table for obtaining 4-yearly centered moving average for the data: 

Year
t
Production
yt
4–yearly moving total 4–yearly moving average 2 unit moving total 4–yearly centred moving averages trend value
1971 1        
           
1972 0 4 1    
           
1973 1 6 1.5 2.5 1.25
           
1974 2 8 2 3.5 1.75
           
1975 3 10 2.5 4.5 2.25
           
1976 2 14 3.5 6 3
           
1977 3 16 4 7.5 3.75
           
1978 6 15 3.75 7.75 3.875
           
1979 5 16 4 7.75 3.875
           
1980 1 20 5 9 4.5
           
1981 4 - - - -
           
1982 10 - - - -
shaalaa.com
Measurement of Secular Trend
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Time Series - Miscellaneous Exercise 4 [पृष्ठ ६९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Time Series
Miscellaneous Exercise 4 | Q 4.06 | पृष्ठ ६९

संबंधित प्रश्न

Fit a trend line to the data in Problem 4 above by the method of least squares. Also, obtain the trend value for the index of industrial production for the year 1987.


Obtain the trend values for the above data using 3-yearly moving averages.


The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.

Year 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
Production
(Million Barrels)
0 0 1 1 2 3 4 5 6 7 8 9 8 9 10

i. Obtain trend values for the above data using 5-yearly moving averages.
ii. Plot the original time series and trend values obtained above on the same graph.


Choose the correct alternative :

What is a disadvantage of the graphical method of determining a trend line?


Fill in the blank :

The method of measuring trend of time series using only averages is _______


State whether the following is True or False :

All the three methods of measuring trend will always give the same results.


Solve the following problem :

The following table shows the production of pig-iron and ferro- alloys (‘000 metric tonnes)

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

Fit a trend line to the data in Problem 7 by the method of least squares.


Solve the following problem :

Fit a trend line to data by the method of least squares.

Year 1977 1978 1979 1980 1981 1982 1983 1984
Number of boxes (in ten thousands) 1 0 3 8 10 4 5 8

Solve the following problem :

Fit a trend line to data in Problem 13 by the method of least squares.


Obtain trend values for data in Problem 19 using 3-yearly moving averages.


Choose the correct alternative:

Moving averages are useful in identifying ______.


The method of measuring trend of time series using only averages is ______


State whether the following statement is True or False:

Least squares method of finding trend is very simple and does not involve any calculations


The following table gives the production of steel (in millions of tons) for years 1976 to 1986.

Year 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
Production 0 4 4 2 6 8 5 9 4 10 10

Obtain the trend value for the year 1990


Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010

Year 1980 1985 1990 1995
IMR 10 7 5 4
Year 2000 2005 2010  
IMR 3 1 0  

Fit a trend line by the method of least squares

Solution: Let us fit equation of trend line for above data.

Let the equation of trend line be y = a + bx   .....(i)

Here n = 7(odd), middle year is `square` and h = 5

Year IMR (y) x x2 x.y
1980 10 – 3 9 – 30
1985 7 – 2 4 – 14
1990 5 – 1 1 – 5
1995 4 0 0 0
2000 3 1 1 3
2005 1 2 4 2
2010 0 3 9 0
Total 30 0 28 – 44

The normal equations are

Σy = na + bΣx

As, Σx = 0, a = `square`

Also, Σxy = aΣx + bΣx2

As, Σx = 0, b =`square`

∴ The equation of trend line is y = `square`


Following table gives the number of road accidents (in thousands) due to overspeeding in Maharashtra for 9 years. Complete the following activity to find the trend by the method of least squares.

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016
Number of accidents 39 18 21 28 27 27 23 25 22

Solution:

We take origin to 18, we get, the number of accidents as follows:

Year Number of accidents xt t u = t - 5 u2 u.xt
2008 21 1 -4 16 -84
2009 0 2 -3 9 0
2010 3 3 -2 4 -6
2011 10 4 -1 1 -10
2012 9 5 0 0 0
2013 9 6 1 1 9
2014 5 7 2 4 10
2015 7 8 3 9 21
2016 4 9 4 16 16
  `sumx_t=68` - `sumu=0` `sumu^2=60` `square`

The equation of trend is xt =a'+ b'u.

The normal equations are,

`sumx_t=na^'+b^'sumu             ...(1)`

`sumux_t=a^'sumu+b^'sumu^2      ...(2)`

Here, n = 9, `sumx_t=68,sumu=0,sumu^2=60,sumux_t=-44`

Putting these values in normal equations, we get

68 = 9a' + b'(0)     ...(3)

∴ a' = `square`

-44 = a'(0) + b'(60)          ...(4)

∴ b' = `square`

The equation of trend line is given by

xt = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×