हिंदी

The following table gives the production of steel (in millions of tons) for years 1976 to 1986. Year 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The following table gives the production of steel (in millions of tons) for years 1976 to 1986.

Year 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
Production 0 4 4 2 6 8 5 9 4 10 10

Obtain the trend value for the year 1990

सारिणी
योग

उत्तर

In the given problem, n = 11 (odd), middle t- values is 1981, h = 1

u = `("t" - "middle t value")/"h"`

= `("t" - 1981)/1`

= t – 1981

We obtain the following table:

Year 

t

Production

yt

u = t − 1981 u2 uyt Trend Value
1976 0 − 5 25 0 1.6819
1977 4 − 4 16 − 16 2.4728
1978 4 − 3 9 − 12 3.2637
1979 2 − 2 4 − 4 4.0546
1980 6 − 1 1 − 6 4.8455
1981 8 0 0 0 5.6364
1982 5 1 1 5 6.4273
1983 9 2 4 18 7.2182
1984 4 3 9 12 8.0091
1985 10 4 16 40 8.8
1986 10 5 25 50 9.5909
Total 62 0 110 87 87

From the table, n = 11, ∑yt = 62, ∑u = 0, ∑u2 = 110, ∑uyt = 87

The two normal equations are:

∑yt = na' + b'∑u and ∑uyt = a'∑u + b'∑u2

∴ 62 = 11a' + b'(0)   .....(i)

and

87 = a'(0) + b'(110)  .....(ii)

From (i), a′ = `62/11` = 5.6364

From (ii), b′ = `87/110` = 0.7909

∴ The equation of the trend line is yt = a′ + b′u

i.e., yt = 5.6364+ 0.7909 u,

where u = t – 1981

Now, for t = 1990,

u = 1990 – 1981

= 9

∴ yt = 5.6364 + 0.7909 × 9

= 12.7545

shaalaa.com
Measurement of Secular Trend
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.4: Time Series - Q.4

संबंधित प्रश्न

Obtain the trend line for the above data using 5 yearly moving averages.


Fit a trend line to the data in Problem 7 by the method of least squares. Also, obtain the trend value for the year 1990.


Obtain the trend values for the above data using 3-yearly moving averages.


The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.

Year 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
Production
(Million Barrels)
0 0 1 1 2 3 4 5 6 7 8 9 8 9 10

i. Obtain trend values for the above data using 5-yearly moving averages.
ii. Plot the original time series and trend values obtained above on the same graph.


Fill in the blank :

The complicated but efficient method of measuring trend of time series is _______.


State whether the following is True or False :

Moving average method of finding trend is very complicated and involves several calculations.


State whether the following is True or False :

All the three methods of measuring trend will always give the same results.


Fit a trend line to the following data by the method of least squares.

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10

Solve the following problem :

Obtain trend values for the following data using 5-yearly moving averages.

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10

Solve the following problem :

Fit a trend line to data in Problem 4 by the method of least squares.


Solve the following problem :

Obtain trend values for the data in Problem 7 using 4-yearly moving averages.


Choose the correct alternative:

Moving averages are useful in identifying ______.


State whether the following statement is True or False:

Least squares method of finding trend is very simple and does not involve any calculations


Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010

Year 1980 1985 1990 1995
IMR 10 7 5 4
Year 2000 2005 2010  
IMR 3 1 0  

Fit a trend line by the method of least squares

Solution: Let us fit equation of trend line for above data.

Let the equation of trend line be y = a + bx   .....(i)

Here n = 7(odd), middle year is `square` and h = 5

Year IMR (y) x x2 x.y
1980 10 – 3 9 – 30
1985 7 – 2 4 – 14
1990 5 – 1 1 – 5
1995 4 0 0 0
2000 3 1 1 3
2005 1 2 4 2
2010 0 3 9 0
Total 30 0 28 – 44

The normal equations are

Σy = na + bΣx

As, Σx = 0, a = `square`

Also, Σxy = aΣx + bΣx2

As, Σx = 0, b =`square`

∴ The equation of trend line is y = `square`


Obtain trend values for data, using 3-yearly moving averages
Solution:

Year IMR 3 yearly
moving total
3-yearly moving
average

(trend value)
1980 10
1985 7 `square` 7.33
1990 5 16 `square`
1995 4 12 4
2000 3 8 `square`
2005 1 `square` 1.33
2010 0

Obtain the trend values for the following data using 5 yearly moving averages:

Year 2000 2001 2002 2003 2004
Production
xi
10 15 20 25 30
Year 2005 2006 2007 2008 2009
Production
xi
35 40 45 50 55

Following table shows the amount of sugar production (in lakh tonnes) for the years 1931 to 1941:

Year Production Year Production
1931 1 1937 8
1932 0 1938 6
1933 1 1939 5
1934 2 1940 1
1935 3 1941 4
1936 2    

Complete the following activity to fit a trend line by method of least squares:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×