Advertisements
Advertisements
प्रश्न
The following table gives the production of steel (in millions of tons) for years 1976 to 1986.
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
Production | 0 | 4 | 4 | 2 | 6 | 8 | 5 | 9 | 4 | 10 | 10 |
Obtain the trend value for the year 1990
उत्तर
In the given problem, n = 11 (odd), middle t- values is 1981, h = 1
u = `("t" - "middle t value")/"h"`
= `("t" - 1981)/1`
= t – 1981
We obtain the following table:
Year t |
Production yt |
u = t − 1981 | u2 | uyt | Trend Value |
1976 | 0 | − 5 | 25 | 0 | 1.6819 |
1977 | 4 | − 4 | 16 | − 16 | 2.4728 |
1978 | 4 | − 3 | 9 | − 12 | 3.2637 |
1979 | 2 | − 2 | 4 | − 4 | 4.0546 |
1980 | 6 | − 1 | 1 | − 6 | 4.8455 |
1981 | 8 | 0 | 0 | 0 | 5.6364 |
1982 | 5 | 1 | 1 | 5 | 6.4273 |
1983 | 9 | 2 | 4 | 18 | 7.2182 |
1984 | 4 | 3 | 9 | 12 | 8.0091 |
1985 | 10 | 4 | 16 | 40 | 8.8 |
1986 | 10 | 5 | 25 | 50 | 9.5909 |
Total | 62 | 0 | 110 | 87 | 87 |
From the table, n = 11, ∑yt = 62, ∑u = 0, ∑u2 = 110, ∑uyt = 87
The two normal equations are:
∑yt = na' + b'∑u and ∑uyt = a'∑u + b'∑u2
∴ 62 = 11a' + b'(0) .....(i)
and
87 = a'(0) + b'(110) .....(ii)
From (i), a′ = `62/11` = 5.6364
From (ii), b′ = `87/110` = 0.7909
∴ The equation of the trend line is yt = a′ + b′u
i.e., yt = 5.6364+ 0.7909 u,
where u = t – 1981
Now, for t = 1990,
u = 1990 – 1981
= 9
∴ yt = 5.6364 + 0.7909 × 9
= 12.7545
APPEARS IN
संबंधित प्रश्न
Obtain the trend line for the above data using 5 yearly moving averages.
Fit a trend line to the data in Problem 7 by the method of least squares. Also, obtain the trend value for the year 1990.
Obtain the trend values for the above data using 3-yearly moving averages.
The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production (Million Barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 8 | 9 | 10 |
i. Obtain trend values for the above data using 5-yearly moving averages.
ii. Plot the original time series and trend values obtained above on the same graph.
Fill in the blank :
The complicated but efficient method of measuring trend of time series is _______.
State whether the following is True or False :
Moving average method of finding trend is very complicated and involves several calculations.
State whether the following is True or False :
All the three methods of measuring trend will always give the same results.
Fit a trend line to the following data by the method of least squares.
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
Solve the following problem :
Obtain trend values for the following data using 5-yearly moving averages.
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
Solve the following problem :
Fit a trend line to data in Problem 4 by the method of least squares.
Solve the following problem :
Obtain trend values for the data in Problem 7 using 4-yearly moving averages.
Choose the correct alternative:
Moving averages are useful in identifying ______.
State whether the following statement is True or False:
Least squares method of finding trend is very simple and does not involve any calculations
Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010
Year | 1980 | 1985 | 1990 | 1995 |
IMR | 10 | 7 | 5 | 4 |
Year | 2000 | 2005 | 2010 | |
IMR | 3 | 1 | 0 |
Fit a trend line by the method of least squares
Solution: Let us fit equation of trend line for above data.
Let the equation of trend line be y = a + bx .....(i)
Here n = 7(odd), middle year is `square` and h = 5
Year | IMR (y) | x | x2 | x.y |
1980 | 10 | – 3 | 9 | – 30 |
1985 | 7 | – 2 | 4 | – 14 |
1990 | 5 | – 1 | 1 | – 5 |
1995 | 4 | 0 | 0 | 0 |
2000 | 3 | 1 | 1 | 3 |
2005 | 1 | 2 | 4 | 2 |
2010 | 0 | 3 | 9 | 0 |
Total | 30 | 0 | 28 | – 44 |
The normal equations are
Σy = na + bΣx
As, Σx = 0, a = `square`
Also, Σxy = aΣx + bΣx2
As, Σx = 0, b =`square`
∴ The equation of trend line is y = `square`
Obtain trend values for data, using 3-yearly moving averages
Solution:
Year | IMR | 3 yearly moving total |
3-yearly moving average (trend value) |
1980 | 10 | – | – |
1985 | 7 | `square` | 7.33 |
1990 | 5 | 16 | `square` |
1995 | 4 | 12 | 4 |
2000 | 3 | 8 | `square` |
2005 | 1 | `square` | 1.33 |
2010 | 0 | – | – |
Obtain the trend values for the following data using 5 yearly moving averages:
Year | 2000 | 2001 | 2002 | 2003 | 2004 |
Production xi |
10 | 15 | 20 | 25 | 30 |
Year | 2005 | 2006 | 2007 | 2008 | 2009 |
Production xi |
35 | 40 | 45 | 50 | 55 |
Following table shows the amount of sugar production (in lakh tonnes) for the years 1931 to 1941:
Year | Production | Year | Production |
1931 | 1 | 1937 | 8 |
1932 | 0 | 1938 | 6 |
1933 | 1 | 1939 | 5 |
1934 | 2 | 1940 | 1 |
1935 | 3 | 1941 | 4 |
1936 | 2 |
Complete the following activity to fit a trend line by method of least squares: