Advertisements
Advertisements
प्रश्न
Fit a trend line to the following data by the method of least squares.
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
उत्तर
In the given problem, n = 9 (odd), middle t – value is 1978, h = 1
u = `"t - middle value"/"h" = ("t" - 1978)/(1)` = t – 1978
We obtain the following table.
Year t |
Production yt |
u = t – 1978 | u2 | uyt | Trend Value |
1974 | 0 | –4 | 16 | 0 | 3.8001 |
1975 | 4 | –3 | 9 | –12 | 4.4334 |
1976 | 9 | –2 | 4 | –18 | 5.0667 |
1977 | 9 | –1 | 1 | –9 | 5.7 |
1978 | 8 | 0 | 0 | 0 | 6.3333 |
1979 | 5 | 1 | 1 | 5 | 6.9666 |
1980 | 4 | 2 | 4 | 8 | 7.5999 |
1981 | 8 | 3 | 9 | 24 | 8.2332 |
1982 | 10 | 4 | 16 | 40 | 8.8665 |
Total | 57 | 0 | 60 | 38 |
From the table, n = 9, `sumy_"t" = 57, sumu = 0, sumu^2 = 60,sumuy_"t" = 38`
The two normal equations are: `sumy_"t" = "na"' + "b"' sumu "and" sumuy_"t", = a'sumu + b'sumu^2`
∴ 57 = 9a' + b'(0) ...(i) and
38 = a'(0) + b'(60) ...(ii)
From (i), a' = `(57)/(9)` = 6.3333
From (ii), b' = `(38)/(60)` = 0.6333
∴ The equation of the trend line is yt = a' + b' u
i.e., yt = 6.3333 + 0.6333 u, where u = t – 1978.
APPEARS IN
संबंधित प्रश्न
Fit a trend line to the data in Problem 4 above by the method of least squares. Also, obtain the trend value for the index of industrial production for the year 1987.
Choose the correct alternative :
What is a disadvantage of the graphical method of determining a trend line?
State whether the following is True or False :
Graphical method of finding trend is very complicated and involves several calculations.
State whether the following is True or False :
All the three methods of measuring trend will always give the same results.
Solve the following problem :
Following table shows the amount of sugar production (in lac tonnes) for the years 1971 to 1982.
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 1 | 0 | 1 | 2 | 3 | 2 | 3 | 6 | 5 | 1 | 4 | 10 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Fit a trend line to data in Problem 4 by the method of least squares.
Obtain trend values for the following data using 4-yearly centered moving averages.
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production | 1 | 0 | 1 | 2 | 3 | 2 |
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 3 | 6 | 5 | 1 | 4 | 10 |
Solve the following problem :
Fit a trend line to data in Problem 16 by the method of least squares.
The complicated but efficient method of measuring trend of time series is ______
The method of measuring trend of time series using only averages is ______
Following table shows the amount of sugar production (in lac tons) for the years 1971 to 1982
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production | 1 | 0 | 1 | 2 | 3 | 2 |
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 4 | 6 | 5 | 1 | 4 | 10 |
Fit a trend line by the method of least squares
Obtain trend values for data, using 4-yearly centred moving averages
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production | 1 | 0 | 1 | 2 | 3 | 2 |
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 4 | 6 | 5 | 1 | 4 | 10 |
Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010
Year | 1980 | 1985 | 1990 | 1995 |
IMR | 10 | 7 | 5 | 4 |
Year | 2000 | 2005 | 2010 | |
IMR | 3 | 1 | 0 |
Fit a trend line by the method of least squares
Solution: Let us fit equation of trend line for above data.
Let the equation of trend line be y = a + bx .....(i)
Here n = 7(odd), middle year is `square` and h = 5
Year | IMR (y) | x | x2 | x.y |
1980 | 10 | – 3 | 9 | – 30 |
1985 | 7 | – 2 | 4 | – 14 |
1990 | 5 | – 1 | 1 | – 5 |
1995 | 4 | 0 | 0 | 0 |
2000 | 3 | 1 | 1 | 3 |
2005 | 1 | 2 | 4 | 2 |
2010 | 0 | 3 | 9 | 0 |
Total | 30 | 0 | 28 | – 44 |
The normal equations are
Σy = na + bΣx
As, Σx = 0, a = `square`
Also, Σxy = aΣx + bΣx2
As, Σx = 0, b =`square`
∴ The equation of trend line is y = `square`
The following table shows gross capital information (in Crore ₹) for years 1966 to 1975:
Years | 1966 | 1967 | 1968 | 1969 | 1970 |
Gross Capital information | 20 | 25 | 25 | 30 | 35 |
Years | 1971 | 1972 | 1973 | 1974 | 1975 |
Gross Capital information | 30 | 45 | 40 | 55 | 65 |
Obtain trend values using 5-yearly moving values.
Fit a trend line to the following data by the method of least square :
Year | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 |
IMR | 10 | 7 | 5 | 4 | 3 | 1 | 0 |