English

Fit a trend line to the following data by the method of least squares. Year 1974 1975 1976 1977 1978 1979 1980 1981 1982 Production 0 4 9 9 8 5 4 8 10 - Mathematics and Statistics

Advertisements
Advertisements

Question

Fit a trend line to the following data by the method of least squares.

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10
Chart
Sum

Solution

In the given problem, n = 9 (odd), middle t – value is 1978, h = 1

u = `"t - middle value"/"h" = ("t" - 1978)/(1)` = t – 1978

We obtain the following table.

Year
t
Production
yt
u = t – 1978 u2 uyt Trend Value
1974 0 –4 16 0 3.8001
1975 4 –3 9 –12 4.4334
1976 9 –2 4 –18 5.0667
1977 9 –1 1 –9 5.7
1978 8 0 0 0 6.3333
1979 5 1 1 5 6.9666
1980 4 2 4 8 7.5999
1981 8 3 9 24 8.2332
1982 10 4 16 40 8.8665
Total 57 0 60 38  

From the table, n = 9, `sumy_"t" = 57, sumu = 0, sumu^2 = 60,sumuy_"t" = 38`

The two normal equations are: `sumy_"t" = "na"' + "b"' sumu  "and" sumuy_"t", = a'sumu + b'sumu^2`

∴ 57 = 9a' + b'(0)          ...(i)   and
38 = a'(0) + b'(60)         ...(ii)

From (i), a' = `(57)/(9)` = 6.3333

From (ii), b' = `(38)/(60)` = 0.6333
∴  The equation of the trend line is yt = a' + b' u
i.e., yt = 6.3333 + 0.6333 u, where u = t – 1978.

shaalaa.com
Measurement of Secular Trend
  Is there an error in this question or solution?
Chapter 4: Time Series - Miscellaneous Exercise 4 [Page 69]

APPEARS IN

RELATED QUESTIONS

Choose the correct alternative :

We can use regression line for past data to forecast future data. We then use the line which_______.


Choose the correct alternative :

Which of the following is a major problem for forecasting, especially when using the method of least squares?


State whether the following is True or False :

Least squares method of finding trend is very simple and does not involve any calculations.


Solve the following problem :

Fit a trend line to data in Problem 4 by the method of least squares.


Obtain trend values for the following data using 4-yearly centered moving averages.

Year 1971 1972 1973 1974 1975 1976
Production 1 0 1 2 3 2
Year 1977 1978 1979 1980 1981 1982
Production 3 6 5 1 4 10

Solve the following problem :

The percentage of girls’ enrollment in total enrollment for years 1960-2005 is shown in the following table.

Year 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
Percentage 0 3 3 4 4 5 6 8 8 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

Fit a trend line to the data in Problem 7 by the method of least squares.


Solve the following problem :

Obtain trend values for the data in Problem 7 using 4-yearly moving averages.


Solve the following problem :

Obtain trend values for data in Problem 10 using 3-yearly moving averages.


The simplest method of measuring trend of time series is ______


State whether the following statement is True or False: 

Moving average method of finding trend is very complicated and involves several calculations


Obtain trend values for data, using 4-yearly centred moving averages

Year 1971 1972 1973 1974 1975 1976
Production 1 0 1 2 3 2
Year 1977 1978 1979 1980 1981 1982
Production 4 6 5 1 4 10

Obtain the trend values for the data, using 3-yearly moving averages

Year 1976 1977 1978 1979 1980 1981
Production 0 4 4 2 6 8
Year 1982 1983 1984 1985 1986  
Production 5 9 4 10 10  

Use the method of least squares to fit a trend line to the data given below. Also, obtain the trend value for the year 1975.

Year 1962 1963 1964 1965 1966 1967 1968 1969
Production
(million barrels)
0 0 1 1 2 3 4 5
Year 1970 1971 1972 1973 1974 1975 1976  
Production
(million barrels)
6 8 9 9 8 7 10  

Fit equation of trend line for the data given below.

Year Production (y) x x2 xy
2006 19 – 9 81 – 171
2007 20 – 7 49 – 140
2008 14 – 5 25 – 70
2009 16 – 3 9 – 48
2010 17 – 1 1 – 17
2011 16 1 1 16
2012 18 3 9 54
2013 17 5 25 85
2014 21 7 49 147
2015 19 9 81 171
Total 177 0 330 27

Let the equation of trend line be y = a + bx   .....(i)

Here n = `square` (even), two middle years are `square` and 2011, and h = `square`

The normal equations are Σy = na + bΣx

As Σx = 0, a = `square`

Also, Σxy = aΣx + bΣx2

As Σx = 0, b = `square`

Substitute values of a and b in equation (i) the equation of trend line is `square`

To find trend value for the year 2016, put x = `square` in the above equation.

y = `square`


Following table shows the amount of sugar production (in lakh tonnes) for the years 1931 to 1941:

Year Production Year Production
1931 1 1937 8
1932 0 1938 6
1933 1 1939 5
1934 2 1940 1
1935 3 1941 4
1936 2    

Complete the following activity to fit a trend line by method of least squares:


Fit a trend line to the following data by the method of least square :

Year 1980 1985 1990 1995 2000 2005 2010
IMR 10 7 5 4 3 1 0

Following table gives the number of road accidents (in thousands) due to overspeeding in Maharashtra for 9 years. Complete the following activity to find the trend by the method of least squares.

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016
Number of accidents 39 18 21 28 27 27 23 25 22

Solution:

We take origin to 18, we get, the number of accidents as follows:

Year Number of accidents xt t u = t - 5 u2 u.xt
2008 21 1 -4 16 -84
2009 0 2 -3 9 0
2010 3 3 -2 4 -6
2011 10 4 -1 1 -10
2012 9 5 0 0 0
2013 9 6 1 1 9
2014 5 7 2 4 10
2015 7 8 3 9 21
2016 4 9 4 16 16
  `sumx_t=68` - `sumu=0` `sumu^2=60` `square`

The equation of trend is xt =a'+ b'u.

The normal equations are,

`sumx_t=na^'+b^'sumu             ...(1)`

`sumux_t=a^'sumu+b^'sumu^2      ...(2)`

Here, n = 9, `sumx_t=68,sumu=0,sumu^2=60,sumux_t=-44`

Putting these values in normal equations, we get

68 = 9a' + b'(0)     ...(3)

∴ a' = `square`

-44 = a'(0) + b'(60)          ...(4)

∴ b' = `square`

The equation of trend line is given by

xt = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×