Advertisements
Advertisements
Question
Use the method of least squares to fit a trend line to the data given below. Also, obtain the trend value for the year 1975.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 |
Production (million barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 |
Year | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | |
Production (million barrels) |
6 | 8 | 9 | 9 | 8 | 7 | 10 |
Solution
In the given problem, n = 15 (odd), middle t – values is 1969, h = 1
u = `("t" - "middle value")/"h"`
= `("t" - 1969)/1`
= t – 1969
We obtain the following table:
Year |
Production yt |
u = t − 1969 | u2 | uyt | Trend Value |
1962 | 0 | − | 49 | 0 | − 0.6 |
1963 | 0 | − 6 | 36 | 0 | 0.2 |
1964 | 1 | − 5 | 25 | − 5 | 1 |
1965 | 1 | − 4 | 16 | − 4 | 1.8 |
1966 | 2 | − 3 | 9 | − 6 | 2.6 |
1967 | 3 | − 2 | 4 | − 6 | 3.4 |
1968 | 4 | − 1 | 1 | − 4 | 4.2 |
1969 | 5 | 0 | 0 | 0 | 5 |
1970 | 6 | 1 | 1 | 6 | 5.8 |
1971 | 8 | 2 | 4 | 16 | 6.6 |
1972 | 9 | 3 | 9 | 27 | 7.4 |
1973 | 9 | 4 | 16 | 36 | 8. |
1974 | 8 | 5 | 25 | 40 | 9 |
1975 | 9 | 6 | 36 | 54 | 9.8 |
1976 | 10 | 7 | 49 | 70 | 10.6 |
Total | 75 | 0 | 280 | 224 |
From the table, n = 15, ∑yt = 75, ∑u = 0, ∑u2 = 280, ∑uyt = 224
The two normal equations are:
∑yt = na' + b'∑u and ∑uyt = a' ∑u + b'∑u2
∴ 75 = 15a' + b'(0) ......(i)
and
224 = a′(0) + b′(280) .....(ii)
From (i), a′ = `75/15` = 5
From (ii), b′= `224/280` = 0.8
∴ The equation of the trend line is yt = a′ + b′u
i.e., yt = 5 + 0.8 u, where u = t – 1969
Now, for t = 1975, u = 1975 – 1969 = 6
∴ yt = 5 + 0.8 × 6 = 9.8
RELATED QUESTIONS
Fit a trend line to the data in Problem 4 above by the method of least squares. Also, obtain the trend value for the index of industrial production for the year 1987.
Obtain the trend values for the data in using 4-yearly centered moving averages.
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
Index | 0 | 2 | 3 | 3 | 2 | 4 | 5 | 6 | 7 | 10 |
Obtain the trend values for the above data using 3-yearly moving averages.
The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production (Million Barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 8 | 9 | 10 |
i. Obtain trend values for the above data using 5-yearly moving averages.
ii. Plot the original time series and trend values obtained above on the same graph.
Choose the correct alternative :
We can use regression line for past data to forecast future data. We then use the line which_______.
Choose the correct alternative :
Which of the following is a major problem for forecasting, especially when using the method of least squares?
Fill in the blank :
The method of measuring trend of time series using only averages is _______
Fill in the blank :
The complicated but efficient method of measuring trend of time series is _______.
State whether the following is True or False :
Graphical method of finding trend is very complicated and involves several calculations.
State whether the following is True or False :
All the three methods of measuring trend will always give the same results.
Solve the following problem :
Obtain trend values for the following data using 5-yearly moving averages.
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
Solve the following problem :
Fit a trend line to data in Problem 4 by the method of least squares.
Obtain trend values for the following data using 4-yearly centered moving averages.
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production | 1 | 0 | 1 | 2 | 3 | 2 |
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 3 | 6 | 5 | 1 | 4 | 10 |
Solve the following problem :
Following data shows the number of boxes of cereal sold in years 1977 to 1984.
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
No. of boxes in ten thousand | 1 | 0 | 3 | 8 | 10 | 4 | 5 | 8 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Fit a trend line to data by the method of least squares.
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
Number of boxes (in ten thousands) | 1 | 0 | 3 | 8 | 10 | 4 | 5 | 8 |
Solve the following problem :
Fit a trend line to data in Problem 13 by the method of least squares.
Solve the following problem :
Obtain trend values for data in Problem 13 using 4-yearly moving averages.
Choose the correct alternative:
Moving averages are useful in identifying ______.
The complicated but efficient method of measuring trend of time series is ______
The method of measuring trend of time series using only averages is ______
State whether the following statement is True or False:
Moving average method of finding trend is very complicated and involves several calculations
The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 |
Production (million barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 |
Year | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | |
Production (million barrels) |
6 | 7 | 8 | 9 | 8 | 9 | 10 |
- Obtain trend values for the above data using 5-yearly moving averages.
- Plot the original time series and trend values obtained above on the same graph.
Following table shows the amount of sugar production (in lakh tonnes) for the years 1931 to 1941:
Year | Production | Year | Production |
1931 | 1 | 1937 | 8 |
1932 | 0 | 1938 | 6 |
1933 | 1 | 1939 | 5 |
1934 | 2 | 1940 | 1 |
1935 | 3 | 1941 | 4 |
1936 | 2 |
Complete the following activity to fit a trend line by method of least squares:
The following table shows gross capital information (in Crore ₹) for years 1966 to 1975:
Years | 1966 | 1967 | 1968 | 1969 | 1970 |
Gross Capital information | 20 | 25 | 25 | 30 | 35 |
Years | 1971 | 1972 | 1973 | 1974 | 1975 |
Gross Capital information | 30 | 45 | 40 | 55 | 65 |
Obtain trend values using 5-yearly moving values.
Fit a trend line to the following data by the method of least square :
Year | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 |
IMR | 10 | 7 | 5 | 4 | 3 | 1 | 0 |