English

Use the method of least squares to fit a trend line to the data in Problem 6 below. Also, obtain the trend value for the year 1975 - Mathematics and Statistics

Advertisements
Advertisements

Question

Use the method of least squares to fit a trend line to the data given below. Also, obtain the trend value for the year 1975.

Year 1962 1963 1964 1965 1966 1967 1968 1969
Production
(million barrels)
0 0 1 1 2 3 4 5
Year 1970 1971 1972 1973 1974 1975 1976  
Production
(million barrels)
6 8 9 9 8 7 10  
Chart
Sum

Solution

In the given problem, n = 15 (odd), middle t – values is 1969, h = 1

u = `("t" - "middle value")/"h"`

= `("t" - 1969)/1`

= t – 1969

We obtain the following table:

Year 
t

Production
yt
u = t − 1969 u2 uyt Trend Value
1962 0 −  49 0 − 0.6
1963 0 − 6 36 0 0.2
1964 1  − 5 25 − 5 1
1965 1 − 4 16 − 4 1.8
1966 2 − 3 9 − 6 2.6
1967 3 − 2 4 − 6 3.4
1968 4 − 1 1 − 4 4.2
1969 5 0 0 0 5
1970 6 1 1 6 5.8
1971 8 2 4 16 6.6
1972 9 3 9 27 7.4
1973 9 4 16 36 8.
1974 8 5 25 40 9
1975 9 6 36 54 9.8
1976 10 7 49 70 10.6
Total 75 0 280 224  

From the table, n = 15, ∑yt = 75, ∑u = 0, ∑u2 = 280, ∑uyt = 224

The two normal equations are:

∑yt = na' + b'∑u and ∑uyt = a' ∑u + b'∑u2

∴ 75 = 15a' + b'(0)   ......(i)

and

224 = a′(0) + b′(280)  .....(ii)

From (i), a′ = `75/15` = 5

From (ii), b′= `224/280` = 0.8

∴ The equation of the trend line is yt = a′ + b′u

i.e., yt = 5 + 0.8 u, where u = t – 1969

Now, for t = 1975, u = 1975 – 1969 = 6

∴  yt = 5 + 0.8 × 6 = 9.8

shaalaa.com
Measurement of Secular Trend
  Is there an error in this question or solution?
Chapter 2.4: Time Series - Q.4

RELATED QUESTIONS

Fit a trend line to the data in Problem 4 above by the method of least squares. Also, obtain the trend value for the index of industrial production for the year 1987.


Obtain the trend values for the data in using 4-yearly centered moving averages.

Year 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
Index 0 2 3 3 2 4 5 6 7 10

Obtain the trend values for the above data using 3-yearly moving averages.


The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.

Year 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
Production
(Million Barrels)
0 0 1 1 2 3 4 5 6 7 8 9 8 9 10

i. Obtain trend values for the above data using 5-yearly moving averages.
ii. Plot the original time series and trend values obtained above on the same graph.


Choose the correct alternative :

We can use regression line for past data to forecast future data. We then use the line which_______.


Choose the correct alternative :

Which of the following is a major problem for forecasting, especially when using the method of least squares?


Fill in the blank :

The method of measuring trend of time series using only averages is _______


Fill in the blank :

The complicated but efficient method of measuring trend of time series is _______.


State whether the following is True or False :

Graphical method of finding trend is very complicated and involves several calculations.


State whether the following is True or False :

All the three methods of measuring trend will always give the same results.


Solve the following problem :

Obtain trend values for the following data using 5-yearly moving averages.

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10

Solve the following problem :

Fit a trend line to data in Problem 4 by the method of least squares.


Obtain trend values for the following data using 4-yearly centered moving averages.

Year 1971 1972 1973 1974 1975 1976
Production 1 0 1 2 3 2
Year 1977 1978 1979 1980 1981 1982
Production 3 6 5 1 4 10

Solve the following problem :

Following data shows the number of boxes of cereal sold in years 1977 to 1984.

Year 1977 1978 1979 1980 1981 1982 1983 1984
No. of boxes in ten thousand 1 0 3 8 10 4 5 8

Fit a trend line to the above data by graphical method.


Solve the following problem :

Fit a trend line to data by the method of least squares.

Year 1977 1978 1979 1980 1981 1982 1983 1984
Number of boxes (in ten thousands) 1 0 3 8 10 4 5 8

Solve the following problem :

Fit a trend line to data in Problem 13 by the method of least squares.


Solve the following problem :

Obtain trend values for data in Problem 13 using 4-yearly moving averages.


Choose the correct alternative:

Moving averages are useful in identifying ______.


The complicated but efficient method of measuring trend of time series is ______


The method of measuring trend of time series using only averages is ______


State whether the following statement is True or False: 

Moving average method of finding trend is very complicated and involves several calculations


The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.

Year 1962 1963 1964 1965 1966 1967 1968 1969
Production
(million barrels)
0 0 1 1 2 3 4 5
Year 1970 1971 1972 1973 1974 1975 1976  
Production
(million barrels)
6 7 8 9 8 9 10  
  1. Obtain trend values for the above data using 5-yearly moving averages.
  2. Plot the original time series and trend values obtained above on the same graph.

Following table shows the amount of sugar production (in lakh tonnes) for the years 1931 to 1941:

Year Production Year Production
1931 1 1937 8
1932 0 1938 6
1933 1 1939 5
1934 2 1940 1
1935 3 1941 4
1936 2    

Complete the following activity to fit a trend line by method of least squares:


The following table shows gross capital information (in Crore ₹) for years 1966 to 1975:

Years 1966 1967 1968 1969 1970
Gross Capital information 20 25 25 30 35
Years 1971 1972 1973 1974 1975
Gross Capital information 30 45 40 55 65

Obtain trend values using 5-yearly moving values.


Fit a trend line to the following data by the method of least square :

Year 1980 1985 1990 1995 2000 2005 2010
IMR 10 7 5 4 3 1 0

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×