Advertisements
Advertisements
Question
Solve the following problem :
Obtain trend values for data in Problem 13 using 4-yearly moving averages.
Solution
Construct the following table for finding 4-yearly centred moving averages.
Year t |
No. of deaths yt |
4–yearly moving average | 4–yearly moving Averages | 2 unit moving total | 4–yearly centred moving averages trend value |
1975 | 0 | ||||
1976 | 6 | ||||
17 | 4.25 | ||||
1977 | 3 | 9 | 4.5 | ||
19 | 4.75 | ||||
1978 | 8 | 10.25 | 5.125 | ||
22 | 5.5 | ||||
1979 | 2 | 11.25 | 5.625 | ||
23 | 5.75 | ||||
19880 | 9 | 1075 | 5.375 | ||
20 | 5 | ||||
1981 | 4 | 12 | 6 | ||
28 | 7 | ||||
1982 | 5 | ||||
1983 | 10 |
APPEARS IN
RELATED QUESTIONS
Obtain the trend values for the data in using 4-yearly centered moving averages.
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
Index | 0 | 2 | 3 | 3 | 2 | 4 | 5 | 6 | 7 | 10 |
Obtain the trend values for the above data using 3-yearly moving averages.
The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production (Million Barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 8 | 9 | 10 |
i. Obtain trend values for the above data using 5-yearly moving averages.
ii. Plot the original time series and trend values obtained above on the same graph.
State whether the following is True or False :
Graphical method of finding trend is very complicated and involves several calculations.
State whether the following is True or False :
Moving average method of finding trend is very complicated and involves several calculations.
Fit a trend line to the following data by the method of least squares.
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
Solve the following problem :
Following table shows the amount of sugar production (in lac tonnes) for the years 1971 to 1982.
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 1 | 0 | 1 | 2 | 3 | 2 | 3 | 6 | 5 | 1 | 4 | 10 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Following table shows the number of traffic fatalities (in a state) resulting from drunken driving for years 1975 to 1983.
Year | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
No. of deaths | 0 | 6 | 3 | 8 | 2 | 9 | 4 | 5 | 10 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010.
Year | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 |
IMR | 10 | 7 | 5 | 4 | 3 | 1 | 0 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Following tables shows the wheat yield (‘000 tonnes) in India for years 1959 to 1968.
Year | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 |
Yield | 0 | 1 | 2 | 3 | 1 | 0 | 4 | 1 | 2 | 10 |
Fit a trend line to the above data by the method of least squares.
The simplest method of measuring trend of time series is ______
State whether the following statement is True or False:
Least squares method of finding trend is very simple and does not involve any calculations
Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010
Year | 1980 | 1985 | 1990 | 1995 |
IMR | 10 | 7 | 5 | 4 |
Year | 2000 | 2005 | 2010 | |
IMR | 3 | 1 | 0 |
Fit a trend line by the method of least squares
Solution: Let us fit equation of trend line for above data.
Let the equation of trend line be y = a + bx .....(i)
Here n = 7(odd), middle year is `square` and h = 5
Year | IMR (y) | x | x2 | x.y |
1980 | 10 | – 3 | 9 | – 30 |
1985 | 7 | – 2 | 4 | – 14 |
1990 | 5 | – 1 | 1 | – 5 |
1995 | 4 | 0 | 0 | 0 |
2000 | 3 | 1 | 1 | 3 |
2005 | 1 | 2 | 4 | 2 |
2010 | 0 | 3 | 9 | 0 |
Total | 30 | 0 | 28 | – 44 |
The normal equations are
Σy = na + bΣx
As, Σx = 0, a = `square`
Also, Σxy = aΣx + bΣx2
As, Σx = 0, b =`square`
∴ The equation of trend line is y = `square`
Obtain trend values for data, using 3-yearly moving averages
Solution:
Year | IMR | 3 yearly moving total |
3-yearly moving average (trend value) |
1980 | 10 | – | – |
1985 | 7 | `square` | 7.33 |
1990 | 5 | 16 | `square` |
1995 | 4 | 12 | 4 |
2000 | 3 | 8 | `square` |
2005 | 1 | `square` | 1.33 |
2010 | 0 | – | – |
Following table shows the amount of sugar production (in lakh tonnes) for the years 1931 to 1941:
Year | Production | Year | Production |
1931 | 1 | 1937 | 8 |
1932 | 0 | 1938 | 6 |
1933 | 1 | 1939 | 5 |
1934 | 2 | 1940 | 1 |
1935 | 3 | 1941 | 4 |
1936 | 2 |
Complete the following activity to fit a trend line by method of least squares:
The publisher of a magazine wants to determine the rate of increase in the number of subscribers. The following table shows the subscription information for eight consecutive years:
Years | 1976 | 1977 | 1978 | 1979 |
No. of subscribers (in millions) |
12 | 11 | 19 | 17 |
Years | 1980 | 1981 | 1982 | 1983 |
No. of subscribers (in millions) |
19 | 18 | 20 | 23 |
Fit a trend line by graphical method.
Fit a trend line to the following data by the method of least square :
Year | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 |
IMR | 10 | 7 | 5 | 4 | 3 | 1 | 0 |
Following table gives the number of road accidents (in thousands) due to overspeeding in Maharashtra for 9 years. Complete the following activity to find the trend by the method of least squares.
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
Number of accidents | 39 | 18 | 21 | 28 | 27 | 27 | 23 | 25 | 22 |
Solution:
We take origin to 18, we get, the number of accidents as follows:
Year | Number of accidents xt | t | u = t - 5 | u2 | u.xt |
2008 | 21 | 1 | -4 | 16 | -84 |
2009 | 0 | 2 | -3 | 9 | 0 |
2010 | 3 | 3 | -2 | 4 | -6 |
2011 | 10 | 4 | -1 | 1 | -10 |
2012 | 9 | 5 | 0 | 0 | 0 |
2013 | 9 | 6 | 1 | 1 | 9 |
2014 | 5 | 7 | 2 | 4 | 10 |
2015 | 7 | 8 | 3 | 9 | 21 |
2016 | 4 | 9 | 4 | 16 | 16 |
`sumx_t=68` | - | `sumu=0` | `sumu^2=60` | `square` |
The equation of trend is xt =a'+ b'u.
The normal equations are,
`sumx_t=na^'+b^'sumu ...(1)`
`sumux_t=a^'sumu+b^'sumu^2 ...(2)`
Here, n = 9, `sumx_t=68,sumu=0,sumu^2=60,sumux_t=-44`
Putting these values in normal equations, we get
68 = 9a' + b'(0) ...(3)
∴ a' = `square`
-44 = a'(0) + b'(60) ...(4)
∴ b' = `square`
The equation of trend line is given by
xt = `square`