Advertisements
Advertisements
प्रश्न
Fit a trend line to the data in Problem 4 above by the method of least squares. Also, obtain the trend value for the index of industrial production for the year 1987.
उत्तर
In the given problem, x = 10(even), two middle t – values are 1980 and 1981, h = 1
u = `"t - mean of two middle values"/("h"/(2)) = ("t" - 1980.5)/(1/2)` = 2(t – 1980.5)
We obtain the following table.
Year (t) | Index of industrial production yt | u = 2 (t - 1980.5) |
u2 | uyt | Trend value |
1976 | 0 | –9 | 81 | 0 | 0.1635 |
1977 | 2 | –7 | 49 | –14 | 1.0605 |
1978 | 3 | –5 | 25 | –15 | 1.9575 |
1979 | 3 | –3 | 9 | –9 | 2.8545 |
1980 | 2 | –1 | 1 | –2 | 3.7515 |
1981 | 4 | 1 | 1 | 4 | 4.6485 |
1982 | 5 | 3 | 9 | 15 | 5.5455 |
1983 | 6 | 5 | 25 | 30 | 6.4425 |
1984 | 7 | 7 | 49 | 49 | 7.3395 |
1985 | 10 | 9 | 81 | 90 | 8.2365 |
Total | 42 | 0 | 330 | 148 |
From the table, n = 10, `sumy_"t" = 42, sumu = 0, sumu^2 = 330, sumuy_"t" = 148`
The two normal equations are : `sumy_"t" = "na"' + "b"' sumu "and" sumuy_"t" = "a"' sumu + "b"'sumu^2`
∴ 42 = 10a' + b'(0) ...(i) and
148 = a'(0) + b'(330) ...(ii)
From (i), a' = `(42)/(10)` = 4.2
From (ii), b' = `(148)/(330)` = 0.4485
∴ The equation of the trend line is yt = a' + b'u
i.e., yt = 4.2 + 0.4485 u, where u = 2(t – 1980.5)
∴ Now, For t = 1987, u = 2(1987 – 1980.5) = 2 x 6.5 = 13
∴ yt = 4.2 + 0.4485 x 13 = 10.0305.
APPEARS IN
संबंधित प्रश्न
Fit a trend line to the data in Problem 7 by the method of least squares. Also, obtain the trend value for the year 1990.
Choose the correct alternative :
Which of the following is a major problem for forecasting, especially when using the method of least squares?
Choose the correct alternative :
What is a disadvantage of the graphical method of determining a trend line?
The simplest method of measuring trend of time series is ______.
Fill in the blank :
The complicated but efficient method of measuring trend of time series is _______.
State whether the following is True or False :
Graphical method of finding trend is very complicated and involves several calculations.
State whether the following is True or False :
Least squares method of finding trend is very simple and does not involve any calculations.
Solve the following problem :
Following table shows the amount of sugar production (in lac tonnes) for the years 1971 to 1982.
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 1 | 0 | 1 | 2 | 3 | 2 | 3 | 6 | 5 | 1 | 4 | 10 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Following table shows the number of traffic fatalities (in a state) resulting from drunken driving for years 1975 to 1983.
Year | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
No. of deaths | 0 | 6 | 3 | 8 | 2 | 9 | 4 | 5 | 10 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010.
Year | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 |
IMR | 10 | 7 | 5 | 4 | 3 | 1 | 0 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Obtain trend values for data in Problem 16 using 3-yearly moving averages.
The complicated but efficient method of measuring trend of time series is ______
The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 |
Production (million barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 |
Year | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | |
Production (million barrels) |
6 | 7 | 8 | 9 | 8 | 9 | 10 |
- Obtain trend values for the above data using 5-yearly moving averages.
- Plot the original time series and trend values obtained above on the same graph.
Fit equation of trend line for the data given below.
Year | Production (y) | x | x2 | xy |
2006 | 19 | – 9 | 81 | – 171 |
2007 | 20 | – 7 | 49 | – 140 |
2008 | 14 | – 5 | 25 | – 70 |
2009 | 16 | – 3 | 9 | – 48 |
2010 | 17 | – 1 | 1 | – 17 |
2011 | 16 | 1 | 1 | 16 |
2012 | 18 | 3 | 9 | 54 |
2013 | 17 | 5 | 25 | 85 |
2014 | 21 | 7 | 49 | 147 |
2015 | 19 | 9 | 81 | 171 |
Total | 177 | 0 | 330 | 27 |
Let the equation of trend line be y = a + bx .....(i)
Here n = `square` (even), two middle years are `square` and 2011, and h = `square`
The normal equations are Σy = na + bΣx
As Σx = 0, a = `square`
Also, Σxy = aΣx + bΣx2
As Σx = 0, b = `square`
Substitute values of a and b in equation (i) the equation of trend line is `square`
To find trend value for the year 2016, put x = `square` in the above equation.
y = `square`
Complete the table using 4 yearly moving average method.
Year | Production | 4 yearly moving total |
4 yearly centered total |
4 yearly centered moving average (trend values) |
2006 | 19 | – | – | |
`square` | ||||
2007 | 20 | – | `square` | |
72 | ||||
2008 | 17 | 142 | 17.75 | |
70 | ||||
2009 | 16 | `square` | 17 | |
`square` | ||||
2010 | 17 | 133 | `square` | |
67 | ||||
2011 | 16 | `square` | `square` | |
`square` | ||||
2012 | 18 | 140 | 17.5 | |
72 | ||||
2013 | 17 | 147 | 18.375 | |
75 | ||||
2014 | 21 | – | – | |
– | ||||
2015 | 19 | – | – |
Complete the following activity to fit a trend line to the following data by the method of least squares.
Year | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
Number of deaths | 0 | 6 | 3 | 8 | 2 | 9 | 4 | 5 | 10 |
Solution:
Here n = 9. We transform year t to u by taking u = t - 1979. We construct the following table for calculation :
Year t | Number of deaths xt | u = t - 1979 | u2 | uxt |
1975 | 0 | - 4 | 16 | 0 |
1976 | 6 | - 3 | 9 | - 18 |
1977 | 3 | - 2 | 4 | - 6 |
1978 | 8 | - 1 | 1 | - 8 |
1979 | 2 | 0 | 0 | 0 |
1980 | 9 | 1 | 1 | 9 |
1981 | 4 | 2 | 4 | 8 |
1982 | 5 | 3 | 9 | 15 |
1983 | 10 | 4 | 16 | 40 |
`sumx_t` =47 | `sumu`=0 | `sumu^2=60` | `square` |
The equation of trend line is xt= a' + b'u.
The normal equations are,
`sumx_t = na^' + b^' sumu` ...(1)
`sumux_t = a^'sumu + b^'sumu^2` ...(2)
Here, n = 9, `sumx_t = 47, sumu= 0, sumu^2 = 60`
By putting these values in normal equations, we get
47 = 9a' + b' (0) ...(3)
40 = a'(0) + b'(60) ...(4)
From equation (3), we get a' = `square`
From equation (4), we get b' = `square`
∴ the equation of trend line is xt = `square`