Advertisements
Advertisements
प्रश्न
Solve the following problem :
Obtain trend values for data in Problem 16 using 3-yearly moving averages.
उत्तर
Construct the following table for finding 3-yearly moving averages.
Year t |
Infant mortality rate yt |
3–yearly moving total | 3–yearly moving averages trend value |
1980 | 10 | – | – |
1985 | 7 | 22 | 7.3333 |
1990 | 5 | 16 | 5.3333 |
1995 | 4 | 12 | 4 |
2000 | 3 | 8 | 2.6667 |
2005 | 1 | 4 | 1.3333 |
2010 | 0 | – | – |
APPEARS IN
संबंधित प्रश्न
Obtain the trend values for the data in using 4-yearly centered moving averages.
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
Index | 0 | 2 | 3 | 3 | 2 | 4 | 5 | 6 | 7 | 10 |
Obtain the trend values for the above data using 3-yearly moving averages.
Fit a trend line to the following data by the method of least squares.
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
Solve the following problem :
Obtain trend values for the following data using 5-yearly moving averages.
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
Solve the following problem :
Fit a trend line to data in Problem 4 by the method of least squares.
Solve the following problem :
Fit a trend line to data in Problem 13 by the method of least squares.
Solve the following problem :
Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010.
Year | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 |
IMR | 10 | 7 | 5 | 4 | 3 | 1 | 0 |
Fit a trend line to the above data by graphical method.
State whether the following statement is True or False:
The secular trend component of time series represents irregular variations
State whether the following statement is True or False:
Moving average method of finding trend is very complicated and involves several calculations
The following table gives the production of steel (in millions of tons) for years 1976 to 1986.
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
Production | 0 | 4 | 4 | 2 | 6 | 8 | 5 | 9 | 4 | 10 | 10 |
Obtain the trend value for the year 1990
Obtain the trend values for the data, using 3-yearly moving averages
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 |
Production | 0 | 4 | 4 | 2 | 6 | 8 |
Year | 1982 | 1983 | 1984 | 1985 | 1986 | |
Production | 5 | 9 | 4 | 10 | 10 |
Use the method of least squares to fit a trend line to the data given below. Also, obtain the trend value for the year 1975.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 |
Production (million barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 |
Year | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | |
Production (million barrels) |
6 | 8 | 9 | 9 | 8 | 7 | 10 |
Complete the table using 4 yearly moving average method.
Year | Production | 4 yearly moving total |
4 yearly centered total |
4 yearly centered moving average (trend values) |
2006 | 19 | – | – | |
`square` | ||||
2007 | 20 | – | `square` | |
72 | ||||
2008 | 17 | 142 | 17.75 | |
70 | ||||
2009 | 16 | `square` | 17 | |
`square` | ||||
2010 | 17 | 133 | `square` | |
67 | ||||
2011 | 16 | `square` | `square` | |
`square` | ||||
2012 | 18 | 140 | 17.5 | |
72 | ||||
2013 | 17 | 147 | 18.375 | |
75 | ||||
2014 | 21 | – | – | |
– | ||||
2015 | 19 | – | – |
Obtain the trend values for the following data using 5 yearly moving averages:
Year | 2000 | 2001 | 2002 | 2003 | 2004 |
Production xi |
10 | 15 | 20 | 25 | 30 |
Year | 2005 | 2006 | 2007 | 2008 | 2009 |
Production xi |
35 | 40 | 45 | 50 | 55 |
The complicated but efficient method of measuring trend of time series is ______.
The publisher of a magazine wants to determine the rate of increase in the number of subscribers. The following table shows the subscription information for eight consecutive years:
Years | 1976 | 1977 | 1978 | 1979 |
No. of subscribers (in millions) |
12 | 11 | 19 | 17 |
Years | 1980 | 1981 | 1982 | 1983 |
No. of subscribers (in millions) |
19 | 18 | 20 | 23 |
Fit a trend line by graphical method.
Fit a trend line to the following data by the method of least square :
Year | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 |
IMR | 10 | 7 | 5 | 4 | 3 | 1 | 0 |
Following table gives the number of road accidents (in thousands) due to overspeeding in Maharashtra for 9 years. Complete the following activity to find the trend by the method of least squares.
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
Number of accidents | 39 | 18 | 21 | 28 | 27 | 27 | 23 | 25 | 22 |
Solution:
We take origin to 18, we get, the number of accidents as follows:
Year | Number of accidents xt | t | u = t - 5 | u2 | u.xt |
2008 | 21 | 1 | -4 | 16 | -84 |
2009 | 0 | 2 | -3 | 9 | 0 |
2010 | 3 | 3 | -2 | 4 | -6 |
2011 | 10 | 4 | -1 | 1 | -10 |
2012 | 9 | 5 | 0 | 0 | 0 |
2013 | 9 | 6 | 1 | 1 | 9 |
2014 | 5 | 7 | 2 | 4 | 10 |
2015 | 7 | 8 | 3 | 9 | 21 |
2016 | 4 | 9 | 4 | 16 | 16 |
`sumx_t=68` | - | `sumu=0` | `sumu^2=60` | `square` |
The equation of trend is xt =a'+ b'u.
The normal equations are,
`sumx_t=na^'+b^'sumu ...(1)`
`sumux_t=a^'sumu+b^'sumu^2 ...(2)`
Here, n = 9, `sumx_t=68,sumu=0,sumu^2=60,sumux_t=-44`
Putting these values in normal equations, we get
68 = 9a' + b'(0) ...(3)
∴ a' = `square`
-44 = a'(0) + b'(60) ...(4)
∴ b' = `square`
The equation of trend line is given by
xt = `square`