Advertisements
Advertisements
प्रश्न
The complicated but efficient method of measuring trend of time series is ______.
विकल्प
graphical method
method of moving average
method of least squares
method of addition
उत्तर
The complicated but efficient method of measuring trend of time series is method of least squares.
APPEARS IN
संबंधित प्रश्न
Obtain the trend values for the data in using 4-yearly centered moving averages.
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
Index | 0 | 2 | 3 | 3 | 2 | 4 | 5 | 6 | 7 | 10 |
Fit a trend line to the data in Problem 7 by the method of least squares. Also, obtain the trend value for the year 1990.
Choose the correct alternative :
We can use regression line for past data to forecast future data. We then use the line which_______.
Choose the correct alternative :
What is a disadvantage of the graphical method of determining a trend line?
The simplest method of measuring trend of time series is ______.
Fill in the blank :
The method of measuring trend of time series using only averages is _______
Solve the following problem :
The following table shows the production of pig-iron and ferro- alloys (‘000 metric tonnes)
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
Fit a trend line to the above data by graphical method.
Fit a trend line to the following data by the method of least squares.
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
Solve the following problem :
Fit a trend line to data in Problem 4 by the method of least squares.
Solve the following problem :
Fit a trend line to data by the method of least squares.
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
Number of boxes (in ten thousands) | 1 | 0 | 3 | 8 | 10 | 4 | 5 | 8 |
Solve the following problem :
Obtain trend values for data in Problem 10 using 3-yearly moving averages.
Solve the following problem :
Obtain trend values for data in Problem 13 using 4-yearly moving averages.
Solve the following problem :
Fit a trend line to data in Problem 16 by the method of least squares.
Solve the following problem :
Obtain trend values for data in Problem 16 using 3-yearly moving averages.
Obtain trend values for data in Problem 19 using 3-yearly moving averages.
Solve the following problem :
Following tables shows the wheat yield (‘000 tonnes) in India for years 1959 to 1968.
Year | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 |
Yield | 0 | 1 | 2 | 3 | 1 | 0 | 4 | 1 | 2 | 10 |
Fit a trend line to the above data by the method of least squares.
The complicated but efficient method of measuring trend of time series is ______
The following table gives the production of steel (in millions of tons) for years 1976 to 1986.
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
Production | 0 | 4 | 4 | 2 | 6 | 8 | 5 | 9 | 4 | 10 | 10 |
Obtain the trend value for the year 1990
Obtain the trend values for the data, using 3-yearly moving averages
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 |
Production | 0 | 4 | 4 | 2 | 6 | 8 |
Year | 1982 | 1983 | 1984 | 1985 | 1986 | |
Production | 5 | 9 | 4 | 10 | 10 |
Use the method of least squares to fit a trend line to the data given below. Also, obtain the trend value for the year 1975.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 |
Production (million barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 |
Year | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | |
Production (million barrels) |
6 | 8 | 9 | 9 | 8 | 7 | 10 |
Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010
Year | 1980 | 1985 | 1990 | 1995 |
IMR | 10 | 7 | 5 | 4 |
Year | 2000 | 2005 | 2010 | |
IMR | 3 | 1 | 0 |
Fit a trend line by the method of least squares
Solution: Let us fit equation of trend line for above data.
Let the equation of trend line be y = a + bx .....(i)
Here n = 7(odd), middle year is `square` and h = 5
Year | IMR (y) | x | x2 | x.y |
1980 | 10 | – 3 | 9 | – 30 |
1985 | 7 | – 2 | 4 | – 14 |
1990 | 5 | – 1 | 1 | – 5 |
1995 | 4 | 0 | 0 | 0 |
2000 | 3 | 1 | 1 | 3 |
2005 | 1 | 2 | 4 | 2 |
2010 | 0 | 3 | 9 | 0 |
Total | 30 | 0 | 28 | – 44 |
The normal equations are
Σy = na + bΣx
As, Σx = 0, a = `square`
Also, Σxy = aΣx + bΣx2
As, Σx = 0, b =`square`
∴ The equation of trend line is y = `square`
Obtain trend values for data, using 3-yearly moving averages
Solution:
Year | IMR | 3 yearly moving total |
3-yearly moving average (trend value) |
1980 | 10 | – | – |
1985 | 7 | `square` | 7.33 |
1990 | 5 | 16 | `square` |
1995 | 4 | 12 | 4 |
2000 | 3 | 8 | `square` |
2005 | 1 | `square` | 1.33 |
2010 | 0 | – | – |
Obtain the trend values for the following data using 5 yearly moving averages:
Year | 2000 | 2001 | 2002 | 2003 | 2004 |
Production xi |
10 | 15 | 20 | 25 | 30 |
Year | 2005 | 2006 | 2007 | 2008 | 2009 |
Production xi |
35 | 40 | 45 | 50 | 55 |
The publisher of a magazine wants to determine the rate of increase in the number of subscribers. The following table shows the subscription information for eight consecutive years:
Years | 1976 | 1977 | 1978 | 1979 |
No. of subscribers (in millions) |
12 | 11 | 19 | 17 |
Years | 1980 | 1981 | 1982 | 1983 |
No. of subscribers (in millions) |
19 | 18 | 20 | 23 |
Fit a trend line by graphical method.
Fit a trend line to the following data by the method of least square :
Year | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 |
IMR | 10 | 7 | 5 | 4 | 3 | 1 | 0 |
Complete the following activity to fit a trend line to the following data by the method of least squares.
Year | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
Number of deaths | 0 | 6 | 3 | 8 | 2 | 9 | 4 | 5 | 10 |
Solution:
Here n = 9. We transform year t to u by taking u = t - 1979. We construct the following table for calculation :
Year t | Number of deaths xt | u = t - 1979 | u2 | uxt |
1975 | 0 | - 4 | 16 | 0 |
1976 | 6 | - 3 | 9 | - 18 |
1977 | 3 | - 2 | 4 | - 6 |
1978 | 8 | - 1 | 1 | - 8 |
1979 | 2 | 0 | 0 | 0 |
1980 | 9 | 1 | 1 | 9 |
1981 | 4 | 2 | 4 | 8 |
1982 | 5 | 3 | 9 | 15 |
1983 | 10 | 4 | 16 | 40 |
`sumx_t` =47 | `sumu`=0 | `sumu^2=60` | `square` |
The equation of trend line is xt= a' + b'u.
The normal equations are,
`sumx_t = na^' + b^' sumu` ...(1)
`sumux_t = a^'sumu + b^'sumu^2` ...(2)
Here, n = 9, `sumx_t = 47, sumu= 0, sumu^2 = 60`
By putting these values in normal equations, we get
47 = 9a' + b' (0) ...(3)
40 = a'(0) + b'(60) ...(4)
From equation (3), we get a' = `square`
From equation (4), we get b' = `square`
∴ the equation of trend line is xt = `square`