हिंदी

Solve the following problem : Following table shows the amount of sugar production (in lac tonnes) for the years 1971 to 1982.Fit a trend line to the above data by graphical method. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

Following table shows the amount of sugar production (in lac tonnes) for the years 1971 to 1982.

Year 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 1 0 1 2 3 2 3 6 5 1 4 10

Fit a trend line to the above data by graphical method.

आलेख

उत्तर

Taking year on X-axis and production on Y-axis, we plot the points for production corresponding to years. Joining these points we get the graph of time series. We fit a trend line as shown in the graph.

shaalaa.com
Measurement of Secular Trend
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Time Series - Miscellaneous Exercise 4 [पृष्ठ ६९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Time Series
Miscellaneous Exercise 4 | Q 4.04 | पृष्ठ ६९

संबंधित प्रश्न

Obtain the trend values for the data in using 4-yearly centered moving averages.

Year 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
Index 0 2 3 3 2 4 5 6 7 10

Fit a trend line to the data in Problem 7 by the method of least squares. Also, obtain the trend value for the year 1990.


The simplest method of measuring trend of time series is ______.


Fill in the blank :

The method of measuring trend of time series using only averages is _______


State whether the following is True or False :

Graphical method of finding trend is very complicated and involves several calculations.


Solve the following problem :

The following table shows the production of pig-iron and ferro- alloys (‘000 metric tonnes)

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

Obtain trend values for the data in Problem 7 using 4-yearly moving averages.


Solve the following problem :

Obtain trend values for data in Problem 13 using 4-yearly moving averages.


Obtain trend values for data in Problem 19 using 3-yearly moving averages.


Choose the correct alternative:

Moving averages are useful in identifying ______.


State whether the following statement is True or False:

Least squares method of finding trend is very simple and does not involve any calculations


Following table shows the amount of sugar production (in lac tons) for the years 1971 to 1982

Year 1971 1972 1973 1974 1975 1976
Production 1 0 1 2 3 2
Year 1977 1978 1979 1980 1981 1982
Production 4 6 5 1 4 10

Fit a trend line by the method of least squares


Obtain the trend values for the data, using 3-yearly moving averages

Year 1976 1977 1978 1979 1980 1981
Production 0 4 4 2 6 8
Year 1982 1983 1984 1985 1986  
Production 5 9 4 10 10  

The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.

Year 1962 1963 1964 1965 1966 1967 1968 1969
Production
(million barrels)
0 0 1 1 2 3 4 5
Year 1970 1971 1972 1973 1974 1975 1976  
Production
(million barrels)
6 7 8 9 8 9 10  
  1. Obtain trend values for the above data using 5-yearly moving averages.
  2. Plot the original time series and trend values obtained above on the same graph.

Obtain trend values for data, using 3-yearly moving averages
Solution:

Year IMR 3 yearly
moving total
3-yearly moving
average

(trend value)
1980 10
1985 7 `square` 7.33
1990 5 16 `square`
1995 4 12 4
2000 3 8 `square`
2005 1 `square` 1.33
2010 0

Fit equation of trend line for the data given below.

Year Production (y) x x2 xy
2006 19 – 9 81 – 171
2007 20 – 7 49 – 140
2008 14 – 5 25 – 70
2009 16 – 3 9 – 48
2010 17 – 1 1 – 17
2011 16 1 1 16
2012 18 3 9 54
2013 17 5 25 85
2014 21 7 49 147
2015 19 9 81 171
Total 177 0 330 27

Let the equation of trend line be y = a + bx   .....(i)

Here n = `square` (even), two middle years are `square` and 2011, and h = `square`

The normal equations are Σy = na + bΣx

As Σx = 0, a = `square`

Also, Σxy = aΣx + bΣx2

As Σx = 0, b = `square`

Substitute values of a and b in equation (i) the equation of trend line is `square`

To find trend value for the year 2016, put x = `square` in the above equation.

y = `square`


Obtain the trend values for the following data using 5 yearly moving averages:

Year 2000 2001 2002 2003 2004
Production
xi
10 15 20 25 30
Year 2005 2006 2007 2008 2009
Production
xi
35 40 45 50 55

Complete the following activity to fit a trend line to the following data by the method of least squares.

Year 1975 1976 1977 1978 1979 1980 1981 1982 1983
Number of deaths 0 6 3 8 2 9 4 5 10

Solution:

Here n = 9. We transform year t to u by taking u = t - 1979. We construct the following table for calculation :

Year t Number of deaths xt u = t - 1979 u2 uxt
1975 0 - 4 16 0
1976 6 - 3 9 - 18
1977 3 - 2 4 - 6
1978 8 - 1 1 - 8
1979 2 0 0 0
1980 9 1 1 9
1981 4 2 4 8
1982 5 3 9 15
1983 10 4 16 40
  `sumx_t` =47 `sumu`=0 `sumu^2=60` `square`

The equation of trend line is xt= a' + b'u.

The normal equations are,

`sumx_t = na^' + b^' sumu`              ...(1)

`sumux_t = a^'sumu + b^'sumu^2`      ...(2)

Here, n = 9, `sumx_t = 47, sumu= 0, sumu^2 = 60`

By putting these values in normal equations, we get

47 = 9a' + b' (0)       ...(3)

40 = a'(0) + b'(60)      ...(4)

From equation (3), we get a' = `square`

From equation (4), we get b' = `square`

∴ the equation of trend line is xt = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×