हिंदी

Solve the following problem : Fit a trend line to the data in Problem 7 by the method of least squares. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

Fit a trend line to the data in Problem 7 by the method of least squares.

योग

उत्तर

In the given problem, n = 10 even), middle t – value is 1980 and 1985, h = 5

u = `"t - mean of two middle values"/("h"/2) = ("t" - 1985.5)/(5/2) = (2("t" – 1985.5))/(5)`

We obtain the following table.

Year
t
Percentage of enrolment 
yt
u = `(2("t" – 1982.5))/(5)` u2 uyt Trend Value
1960 0 –9 81 0 0.8187
1965 3 –7 49 –21 1.7701
1970 3 –5 25 –15 2.7215
1975 4 –3 9 –12 3.6729
1980 4 –1 1 –4 4.6243
1985 5 1 1 5 5.5757
1990 6 3 9 18 6.5271
1995 8 5 25 40 7.4785
2000 8 7 49 56 8.4299
2005 10 9 81 90 9.3813
Total 51 0 330 157  

From the table, n = 10, `sumy_"t" = 51, sumu = 0, sumu^2 = 330,sumuy_"t" = 157`

The two normal equations are: `sumy_"t" = "na"' + "b"' sumu  "and" sumuy_"t", = a'sumu + b'sumu^2`

∴ 51 = 10a' + b'(0)            ...(i)   and
157 = a'(0) + b'(330)         ...(ii)

From (i), a' = `(51)/(10)` = 5.1

From (ii), b' = `(157)/(330)` = 0.4757
∴  The equation of the trend line is yt = a' + b'u
i.e., yt = 5.1 + 0.4757 u, where u = `(2("t" – 1985.5))/(5)`.

shaalaa.com
Measurement of Secular Trend
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Time Series - Miscellaneous Exercise 4 [पृष्ठ ६९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Time Series
Miscellaneous Exercise 4 | Q 4.08 | पृष्ठ ६९

संबंधित प्रश्न

Obtain the trend line for the above data using 5 yearly moving averages.


Fit a trend line to the data in Problem 7 by the method of least squares. Also, obtain the trend value for the year 1990.


Obtain the trend values for the above data using 3-yearly moving averages.


Fill in the blank :

The complicated but efficient method of measuring trend of time series is _______.


State whether the following is True or False :

Graphical method of finding trend is very complicated and involves several calculations.


State whether the following is True or False :

All the three methods of measuring trend will always give the same results.


Solve the following problem :

The following table shows the production of pig-iron and ferro- alloys (‘000 metric tonnes)

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10

Fit a trend line to the above data by graphical method.


Obtain trend values for the following data using 4-yearly centered moving averages.

Year 1971 1972 1973 1974 1975 1976
Production 1 0 1 2 3 2
Year 1977 1978 1979 1980 1981 1982
Production 3 6 5 1 4 10

Solve the following problem :

Obtain trend values for the data in Problem 7 using 4-yearly moving averages.


Solve the following problem :

Fit a trend line to data by the method of least squares.

Year 1977 1978 1979 1980 1981 1982 1983 1984
Number of boxes (in ten thousands) 1 0 3 8 10 4 5 8

Solve the following problem :

Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010.

Year 1980 1985 1990 1995 2000 2005 2010
IMR 10 7 5 4 3 1 0

Fit a trend line to the above data by graphical method.


Choose the correct alternative:

Moving averages are useful in identifying ______.


The method of measuring trend of time series using only averages is ______


State whether the following statement is True or False:

The secular trend component of time series represents irregular variations


Following table shows the amount of sugar production (in lac tons) for the years 1971 to 1982

Year 1971 1972 1973 1974 1975 1976
Production 1 0 1 2 3 2
Year 1977 1978 1979 1980 1981 1982
Production 4 6 5 1 4 10

Fit a trend line by the method of least squares


Obtain trend values for data, using 4-yearly centred moving averages

Year 1971 1972 1973 1974 1975 1976
Production 1 0 1 2 3 2
Year 1977 1978 1979 1980 1981 1982
Production 4 6 5 1 4 10

The following table gives the production of steel (in millions of tons) for years 1976 to 1986.

Year 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
Production 0 4 4 2 6 8 5 9 4 10 10

Obtain the trend value for the year 1990


Obtain trend values for data, using 3-yearly moving averages
Solution:

Year IMR 3 yearly
moving total
3-yearly moving
average

(trend value)
1980 10
1985 7 `square` 7.33
1990 5 16 `square`
1995 4 12 4
2000 3 8 `square`
2005 1 `square` 1.33
2010 0

Following table gives the number of road accidents (in thousands) due to overspeeding in Maharashtra for 9 years. Complete the following activity to find the trend by the method of least squares.

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016
Number of accidents 39 18 21 28 27 27 23 25 22

Solution:

We take origin to 18, we get, the number of accidents as follows:

Year Number of accidents xt t u = t - 5 u2 u.xt
2008 21 1 -4 16 -84
2009 0 2 -3 9 0
2010 3 3 -2 4 -6
2011 10 4 -1 1 -10
2012 9 5 0 0 0
2013 9 6 1 1 9
2014 5 7 2 4 10
2015 7 8 3 9 21
2016 4 9 4 16 16
  `sumx_t=68` - `sumu=0` `sumu^2=60` `square`

The equation of trend is xt =a'+ b'u.

The normal equations are,

`sumx_t=na^'+b^'sumu             ...(1)`

`sumux_t=a^'sumu+b^'sumu^2      ...(2)`

Here, n = 9, `sumx_t=68,sumu=0,sumu^2=60,sumux_t=-44`

Putting these values in normal equations, we get

68 = 9a' + b'(0)     ...(3)

∴ a' = `square`

-44 = a'(0) + b'(60)          ...(4)

∴ b' = `square`

The equation of trend line is given by

xt = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×