Advertisements
Advertisements
प्रश्न
Solve the following problem :
Fit a trend line to the data in Problem 7 by the method of least squares.
उत्तर
In the given problem, n = 10 even), middle t – value is 1980 and 1985, h = 5
u = `"t - mean of two middle values"/("h"/2) = ("t" - 1985.5)/(5/2) = (2("t" – 1985.5))/(5)`
We obtain the following table.
Year t |
Percentage of enrolment yt |
u = `(2("t" – 1982.5))/(5)` | u2 | uyt | Trend Value |
1960 | 0 | –9 | 81 | 0 | 0.8187 |
1965 | 3 | –7 | 49 | –21 | 1.7701 |
1970 | 3 | –5 | 25 | –15 | 2.7215 |
1975 | 4 | –3 | 9 | –12 | 3.6729 |
1980 | 4 | –1 | 1 | –4 | 4.6243 |
1985 | 5 | 1 | 1 | 5 | 5.5757 |
1990 | 6 | 3 | 9 | 18 | 6.5271 |
1995 | 8 | 5 | 25 | 40 | 7.4785 |
2000 | 8 | 7 | 49 | 56 | 8.4299 |
2005 | 10 | 9 | 81 | 90 | 9.3813 |
Total | 51 | 0 | 330 | 157 |
From the table, n = 10, `sumy_"t" = 51, sumu = 0, sumu^2 = 330,sumuy_"t" = 157`
The two normal equations are: `sumy_"t" = "na"' + "b"' sumu "and" sumuy_"t", = a'sumu + b'sumu^2`
∴ 51 = 10a' + b'(0) ...(i) and
157 = a'(0) + b'(330) ...(ii)
From (i), a' = `(51)/(10)` = 5.1
From (ii), b' = `(157)/(330)` = 0.4757
∴ The equation of the trend line is yt = a' + b'u
i.e., yt = 5.1 + 0.4757 u, where u = `(2("t" – 1985.5))/(5)`.
APPEARS IN
संबंधित प्रश्न
Obtain the trend line for the above data using 5 yearly moving averages.
Fit a trend line to the data in Problem 7 by the method of least squares. Also, obtain the trend value for the year 1990.
Obtain the trend values for the above data using 3-yearly moving averages.
Fill in the blank :
The complicated but efficient method of measuring trend of time series is _______.
State whether the following is True or False :
Graphical method of finding trend is very complicated and involves several calculations.
State whether the following is True or False :
All the three methods of measuring trend will always give the same results.
Solve the following problem :
The following table shows the production of pig-iron and ferro- alloys (‘000 metric tonnes)
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
Fit a trend line to the above data by graphical method.
Obtain trend values for the following data using 4-yearly centered moving averages.
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production | 1 | 0 | 1 | 2 | 3 | 2 |
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 3 | 6 | 5 | 1 | 4 | 10 |
Solve the following problem :
Obtain trend values for the data in Problem 7 using 4-yearly moving averages.
Solve the following problem :
Fit a trend line to data by the method of least squares.
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
Number of boxes (in ten thousands) | 1 | 0 | 3 | 8 | 10 | 4 | 5 | 8 |
Solve the following problem :
Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010.
Year | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 |
IMR | 10 | 7 | 5 | 4 | 3 | 1 | 0 |
Fit a trend line to the above data by graphical method.
Choose the correct alternative:
Moving averages are useful in identifying ______.
The method of measuring trend of time series using only averages is ______
State whether the following statement is True or False:
The secular trend component of time series represents irregular variations
Following table shows the amount of sugar production (in lac tons) for the years 1971 to 1982
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production | 1 | 0 | 1 | 2 | 3 | 2 |
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 4 | 6 | 5 | 1 | 4 | 10 |
Fit a trend line by the method of least squares
Obtain trend values for data, using 4-yearly centred moving averages
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production | 1 | 0 | 1 | 2 | 3 | 2 |
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 4 | 6 | 5 | 1 | 4 | 10 |
The following table gives the production of steel (in millions of tons) for years 1976 to 1986.
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
Production | 0 | 4 | 4 | 2 | 6 | 8 | 5 | 9 | 4 | 10 | 10 |
Obtain the trend value for the year 1990
Obtain trend values for data, using 3-yearly moving averages
Solution:
Year | IMR | 3 yearly moving total |
3-yearly moving average (trend value) |
1980 | 10 | – | – |
1985 | 7 | `square` | 7.33 |
1990 | 5 | 16 | `square` |
1995 | 4 | 12 | 4 |
2000 | 3 | 8 | `square` |
2005 | 1 | `square` | 1.33 |
2010 | 0 | – | – |
Following table gives the number of road accidents (in thousands) due to overspeeding in Maharashtra for 9 years. Complete the following activity to find the trend by the method of least squares.
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
Number of accidents | 39 | 18 | 21 | 28 | 27 | 27 | 23 | 25 | 22 |
Solution:
We take origin to 18, we get, the number of accidents as follows:
Year | Number of accidents xt | t | u = t - 5 | u2 | u.xt |
2008 | 21 | 1 | -4 | 16 | -84 |
2009 | 0 | 2 | -3 | 9 | 0 |
2010 | 3 | 3 | -2 | 4 | -6 |
2011 | 10 | 4 | -1 | 1 | -10 |
2012 | 9 | 5 | 0 | 0 | 0 |
2013 | 9 | 6 | 1 | 1 | 9 |
2014 | 5 | 7 | 2 | 4 | 10 |
2015 | 7 | 8 | 3 | 9 | 21 |
2016 | 4 | 9 | 4 | 16 | 16 |
`sumx_t=68` | - | `sumu=0` | `sumu^2=60` | `square` |
The equation of trend is xt =a'+ b'u.
The normal equations are,
`sumx_t=na^'+b^'sumu ...(1)`
`sumux_t=a^'sumu+b^'sumu^2 ...(2)`
Here, n = 9, `sumx_t=68,sumu=0,sumu^2=60,sumux_t=-44`
Putting these values in normal equations, we get
68 = 9a' + b'(0) ...(3)
∴ a' = `square`
-44 = a'(0) + b'(60) ...(4)
∴ b' = `square`
The equation of trend line is given by
xt = `square`