Advertisements
Advertisements
प्रश्न
Solve the following problem :
Following tables shows the wheat yield (‘000 tonnes) in India for years 1959 to 1968.
Year | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 |
Yield | 0 | 1 | 2 | 3 | 1 | 0 | 4 | 1 | 2 | 10 |
Fit a trend line to the above data by the method of least squares.
उत्तर
In the given problem, n = 10 (even), two middle t – value are 1963 and 1964, h = 1
u = `"t - mean of two middle values"/("h"/2) = ("t" - 1963.5)/(1/2)` = 2(t – 1963.5)
We obtain the following table.
Year t |
Yield (in '000 tonnes) yt |
u = 2(t – 1963.5) | u2 | uyt | Trend Value |
1959 | 0 | –9 | 81 | 0 | –0.1632 |
1960 | 1 | –7 | 49 | –7 | 0.4064 |
1961 | 2 | –5 | 25 | –10 | 0.9760 |
196 | 3 | –3 | 9 | –9 | 1.5456 |
1963 | 1 | –1 | 1 | –1 | 2.1152 |
1964 | 0 | 1 | 1 | 0 | 2.6848 |
1965 | 4 | 3 | 9 | 12 | 3.2544 |
1966 | 1 | 5 | 25 | 5 | 3.8240 |
1967 | 2 | 7 | 49 | 14 | 4.3936 |
1968 | 10 | 9 | 81 | 90 | 4.9632 |
Total | 24 | 0 | 330 | 94 |
From the table, n = 10, `sumy_"t" = 24, sumu = 0, sumu^2 = 330,sumuy_"t" = 94`
The two normal equations are: `sumy_"t" = "na"' + "b"' sumu "and" sumuy_"t", = a'sumu + b'sumu^2`
∴ 24 = 10a' + b'(0) ...(i) and
94 = a'(0) + b'(330) ...(ii)
From (i), a' = `(24)/(10)` = 2.4
From (ii), b' = `(94)/(330)` = 0.2848
∴ The equation of the trend line is yt = a' + b'u
i.e., yt = 2.4 + 0.2848 u, where u = 2(t – 1963.5).
APPEARS IN
संबंधित प्रश्न
Fit a trend line to the data in Problem 7 by the method of least squares. Also, obtain the trend value for the year 1990.
The following table shows the production of gasoline in U.S.A. for the years 1962 to 1976.
Year | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production (Million Barrels) |
0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 8 | 9 | 10 |
i. Obtain trend values for the above data using 5-yearly moving averages.
ii. Plot the original time series and trend values obtained above on the same graph.
Fill in the blank :
The method of measuring trend of time series using only averages is _______
Fill in the blank :
The complicated but efficient method of measuring trend of time series is _______.
State whether the following is True or False :
Graphical method of finding trend is very complicated and involves several calculations.
Fit a trend line to the following data by the method of least squares.
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
Solve the following problem :
Obtain trend values for the following data using 5-yearly moving averages.
Year | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 0 | 4 | 9 | 9 | 8 | 5 | 4 | 8 | 10 |
Solve the following problem :
Obtain trend values for the data in Problem 7 using 4-yearly moving averages.
Solve the following problem :
Fit a trend line to data by the method of least squares.
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 |
Number of boxes (in ten thousands) | 1 | 0 | 3 | 8 | 10 | 4 | 5 | 8 |
Solve the following problem :
Obtain trend values for data in Problem 10 using 3-yearly moving averages.
Solve the following problem :
Following table shows the number of traffic fatalities (in a state) resulting from drunken driving for years 1975 to 1983.
Year | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
No. of deaths | 0 | 6 | 3 | 8 | 2 | 9 | 4 | 5 | 10 |
Fit a trend line to the above data by graphical method.
Solve the following problem :
Fit a trend line to data in Problem 16 by the method of least squares.
Solve the following problem :
Obtain trend values for data in Problem 16 using 3-yearly moving averages.
The complicated but efficient method of measuring trend of time series is ______
The simplest method of measuring trend of time series is ______
State whether the following statement is True or False:
The secular trend component of time series represents irregular variations
Following table shows the amount of sugar production (in lac tons) for the years 1971 to 1982
Year | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
Production | 1 | 0 | 1 | 2 | 3 | 2 |
Year | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
Production | 4 | 6 | 5 | 1 | 4 | 10 |
Fit a trend line by the method of least squares
The following table gives the production of steel (in millions of tons) for years 1976 to 1986.
Year | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
Production | 0 | 4 | 4 | 2 | 6 | 8 | 5 | 9 | 4 | 10 | 10 |
Obtain the trend value for the year 1990
Following table shows the amount of sugar production (in lakh tonnes) for the years 1931 to 1941:
Year | Production | Year | Production |
1931 | 1 | 1937 | 8 |
1932 | 0 | 1938 | 6 |
1933 | 1 | 1939 | 5 |
1934 | 2 | 1940 | 1 |
1935 | 3 | 1941 | 4 |
1936 | 2 |
Complete the following activity to fit a trend line by method of least squares:
Following table gives the number of road accidents (in thousands) due to overspeeding in Maharashtra for 9 years. Complete the following activity to find the trend by the method of least squares.
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
Number of accidents | 39 | 18 | 21 | 28 | 27 | 27 | 23 | 25 | 22 |
Solution:
We take origin to 18, we get, the number of accidents as follows:
Year | Number of accidents xt | t | u = t - 5 | u2 | u.xt |
2008 | 21 | 1 | -4 | 16 | -84 |
2009 | 0 | 2 | -3 | 9 | 0 |
2010 | 3 | 3 | -2 | 4 | -6 |
2011 | 10 | 4 | -1 | 1 | -10 |
2012 | 9 | 5 | 0 | 0 | 0 |
2013 | 9 | 6 | 1 | 1 | 9 |
2014 | 5 | 7 | 2 | 4 | 10 |
2015 | 7 | 8 | 3 | 9 | 21 |
2016 | 4 | 9 | 4 | 16 | 16 |
`sumx_t=68` | - | `sumu=0` | `sumu^2=60` | `square` |
The equation of trend is xt =a'+ b'u.
The normal equations are,
`sumx_t=na^'+b^'sumu ...(1)`
`sumux_t=a^'sumu+b^'sumu^2 ...(2)`
Here, n = 9, `sumx_t=68,sumu=0,sumu^2=60,sumux_t=-44`
Putting these values in normal equations, we get
68 = 9a' + b'(0) ...(3)
∴ a' = `square`
-44 = a'(0) + b'(60) ...(4)
∴ b' = `square`
The equation of trend line is given by
xt = `square`