मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Fit a trend line to the data in Problem 7 by the method of least squares. Also, obtain the trend value for the year 1990. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Fit a trend line to the data in Problem 7 by the method of least squares. Also, obtain the trend value for the year 1990.

बेरीज

उत्तर

In the given problem, n = 11 (odd), middle t- values is 1981, h = 1

u = `"t - middle value"/"h" = ("t" - 1981)/(1)` = t – 1981

We obtain the following table.

Year
t
Production
yt
u = t–1981 u2 uyt Trend Value
1976 0 –5 25 0 1.6819
1977 4 –4 16 –16 2.4728
1978 4 –3 9 –12 3.2637
1979 2 –2 4 –4 4.0546
1980 6 –1 1 –6 4.8455
1981 8 0 0 0 5.6364
1982 5 1 1 5 6.4273
1983 9 2 4 18 7.2182
1984 4 3 9 12 8.0091
1985 10 4 16 40 8.8
1986 10 5 25 50 9.5909
Total 62 0 110 87  

From the table, n = 11, `sumy_"t" = 62, sumu = 0, sumu^2 = 110, sumuy_"t" = 87`

The two normal equations are : `sumy_"t" = "na"' + "b"' sumu  "and" sumuy_"t" = "a"' sumu + "b"'sumu^2`

∴ 62 = 11a' + b'(0)        ...(i)   and
87 = a'(0) + b'(110)       ...(ii)

From (i), a' = `(62)/(11)` = 5.6364

From (ii), b' = `(87)/(110)` = 0.7909
∴ The equation of the trend line is yt = a' + b'u
i.e., yt = 5.6364 + 0.7909 u, where u = t – 1981
∴ Now, For t = 1990, u = 1990 – 1981= 9
∴ yt = 5.6364 + 0.7909 x 9 = 12.7545.

shaalaa.com
Measurement of Secular Trend
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Time Series - Exercise 4.1 [पृष्ठ ६६]

APPEARS IN

संबंधित प्रश्‍न

Obtain the trend line for the above data using 5 yearly moving averages.


Choose the correct alternative :

Which of the following is a major problem for forecasting, especially when using the method of least squares?


The simplest method of measuring trend of time series is ______.


Fill in the blank :

The method of measuring trend of time series using only averages is _______


State whether the following is True or False :

Graphical method of finding trend is very complicated and involves several calculations.


Fit a trend line to the following data by the method of least squares.

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10

Solve the following problem :

Obtain trend values for the following data using 5-yearly moving averages.

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982
Production 0 4 9 9 8 5 4 8 10

Solve the following problem :

Following data shows the number of boxes of cereal sold in years 1977 to 1984.

Year 1977 1978 1979 1980 1981 1982 1983 1984
No. of boxes in ten thousand 1 0 3 8 10 4 5 8

Fit a trend line to the above data by graphical method.


Solve the following problem :

Obtain trend values for data in Problem 13 using 4-yearly moving averages.


Obtain trend values for data in Problem 19 using 3-yearly moving averages.


Choose the correct alternative:

Moving averages are useful in identifying ______.


The simplest method of measuring trend of time series is ______


State whether the following statement is True or False: 

Moving average method of finding trend is very complicated and involves several calculations


Following table shows the amount of sugar production (in lac tons) for the years 1971 to 1982

Year 1971 1972 1973 1974 1975 1976
Production 1 0 1 2 3 2
Year 1977 1978 1979 1980 1981 1982
Production 4 6 5 1 4 10

Fit a trend line by the method of least squares


Use the method of least squares to fit a trend line to the data given below. Also, obtain the trend value for the year 1975.

Year 1962 1963 1964 1965 1966 1967 1968 1969
Production
(million barrels)
0 0 1 1 2 3 4 5
Year 1970 1971 1972 1973 1974 1975 1976  
Production
(million barrels)
6 8 9 9 8 7 10  

Obtain trend values for data, using 3-yearly moving averages
Solution:

Year IMR 3 yearly
moving total
3-yearly moving
average

(trend value)
1980 10
1985 7 `square` 7.33
1990 5 16 `square`
1995 4 12 4
2000 3 8 `square`
2005 1 `square` 1.33
2010 0

The complicated but efficient method of measuring trend of time series is ______.


The following table shows gross capital information (in Crore ₹) for years 1966 to 1975:

Years 1966 1967 1968 1969 1970
Gross Capital information 20 25 25 30 35
Years 1971 1972 1973 1974 1975
Gross Capital information 30 45 40 55 65

Obtain trend values using 5-yearly moving values.


Following table gives the number of road accidents (in thousands) due to overspeeding in Maharashtra for 9 years. Complete the following activity to find the trend by the method of least squares.

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016
Number of accidents 39 18 21 28 27 27 23 25 22

Solution:

We take origin to 18, we get, the number of accidents as follows:

Year Number of accidents xt t u = t - 5 u2 u.xt
2008 21 1 -4 16 -84
2009 0 2 -3 9 0
2010 3 3 -2 4 -6
2011 10 4 -1 1 -10
2012 9 5 0 0 0
2013 9 6 1 1 9
2014 5 7 2 4 10
2015 7 8 3 9 21
2016 4 9 4 16 16
  `sumx_t=68` - `sumu=0` `sumu^2=60` `square`

The equation of trend is xt =a'+ b'u.

The normal equations are,

`sumx_t=na^'+b^'sumu             ...(1)`

`sumux_t=a^'sumu+b^'sumu^2      ...(2)`

Here, n = 9, `sumx_t=68,sumu=0,sumu^2=60,sumux_t=-44`

Putting these values in normal equations, we get

68 = 9a' + b'(0)     ...(3)

∴ a' = `square`

-44 = a'(0) + b'(60)          ...(4)

∴ b' = `square`

The equation of trend line is given by

xt = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×