English

Solve the following problem : Fit a trend line to data in Problem 16 by the method of least squares. - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following problem :

Fit a trend line to data in Problem 16 by the method of least squares.

Sum

Solution

In the given problem, n = 7 (odd), middle t – value is 1995, h = 5

u = `"t - middle value"/"h" = ("t" - 1995)/(1)` 

We obtain the following table.

Year
t
Infant mortality rate 
yt
u = `("t" - 1995)/(5)` u2 uyt Trend Value
1980 10 –3 9 –30 8.9999
1985 7 –2 4 –14 7.4285
1990 5 –1 1 –5 5.8571
1995 4 0 0 0 4.2857
2000 3 1 1 3 2.7143
2005 1 2 4 2 1.1429
2010 0 3 9 0 –0.4285
Total 30 0 28 –44  

From the table, n = 7, `sumy_"t" = 10, sumu = 0, sumu^2 = 28,sumuy_"t" = – 44`

The two normal equations are: `sumy_"t" = "na"' + "b"' sumu  "and" sumuy_"t", = a'sumu + b'sumu^2`

∴ 30 = 7a' + b'(0)               ...(i)   and
– 44 = a'(0) + b'(28)           ...(ii)

From (i), a' = `(30)/(7)` = 4.2857

From (ii), b' = `(-44)/(28)` = 1.5714
∴  The equation of the trend line is yt = a' + b'u
i.e., yt = 4.2857 – 1.5714 u, where u = `("t" - 1995)/(5)`.

shaalaa.com
Measurement of Secular Trend
  Is there an error in this question or solution?
Chapter 4: Time Series - Miscellaneous Exercise 4 [Page 70]

APPEARS IN

RELATED QUESTIONS

Fit a trend line to the data in Problem 4 above by the method of least squares. Also, obtain the trend value for the index of industrial production for the year 1987.


Choose the correct alternative :

What is a disadvantage of the graphical method of determining a trend line?


Fill in the blank :

The method of measuring trend of time series using only averages is _______


Fill in the blank :

The complicated but efficient method of measuring trend of time series is _______.


State whether the following is True or False :

All the three methods of measuring trend will always give the same results.


Solve the following problem :

Fit a trend line to data in Problem 4 by the method of least squares.


Obtain trend values for the following data using 4-yearly centered moving averages.

Year 1971 1972 1973 1974 1975 1976
Production 1 0 1 2 3 2
Year 1977 1978 1979 1980 1981 1982
Production 3 6 5 1 4 10

Solve the following problem :

The percentage of girls’ enrollment in total enrollment for years 1960-2005 is shown in the following table.

Year 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
Percentage 0 3 3 4 4 5 6 8 8 10

Fit a trend line to the above data by graphical method.


Solve the following problem :

Fit a trend line to the data in Problem 7 by the method of least squares.


Solve the following problem :

Following data shows the number of boxes of cereal sold in years 1977 to 1984.

Year 1977 1978 1979 1980 1981 1982 1983 1984
No. of boxes in ten thousand 1 0 3 8 10 4 5 8

Fit a trend line to the above data by graphical method.


Solve the following problem :

Fit a trend line to data by the method of least squares.

Year 1977 1978 1979 1980 1981 1982 1983 1984
Number of boxes (in ten thousands) 1 0 3 8 10 4 5 8

Solve the following problem :

Obtain trend values for data in Problem 10 using 3-yearly moving averages.


Solve the following problem :

Following table shows the all India infant mortality rates (per ‘000) for years 1980 to 2010.

Year 1980 1985 1990 1995 2000 2005 2010
IMR 10 7 5 4 3 1 0

Fit a trend line to the above data by graphical method.


State whether the following statement is True or False:

The secular trend component of time series represents irregular variations


State whether the following statement is True or False: 

Moving average method of finding trend is very complicated and involves several calculations


State whether the following statement is True or False:

Least squares method of finding trend is very simple and does not involve any calculations


Following table shows the amount of sugar production (in lac tons) for the years 1971 to 1982

Year 1971 1972 1973 1974 1975 1976
Production 1 0 1 2 3 2
Year 1977 1978 1979 1980 1981 1982
Production 4 6 5 1 4 10

Fit a trend line by the method of least squares


The following table shows gross capital information (in Crore ₹) for years 1966 to 1975:

Years 1966 1967 1968 1969 1970
Gross Capital information 20 25 25 30 35
Years 1971 1972 1973 1974 1975
Gross Capital information 30 45 40 55 65

Obtain trend values using 5-yearly moving values.


Complete the following activity to fit a trend line to the following data by the method of least squares.

Year 1975 1976 1977 1978 1979 1980 1981 1982 1983
Number of deaths 0 6 3 8 2 9 4 5 10

Solution:

Here n = 9. We transform year t to u by taking u = t - 1979. We construct the following table for calculation :

Year t Number of deaths xt u = t - 1979 u2 uxt
1975 0 - 4 16 0
1976 6 - 3 9 - 18
1977 3 - 2 4 - 6
1978 8 - 1 1 - 8
1979 2 0 0 0
1980 9 1 1 9
1981 4 2 4 8
1982 5 3 9 15
1983 10 4 16 40
  `sumx_t` =47 `sumu`=0 `sumu^2=60` `square`

The equation of trend line is xt= a' + b'u.

The normal equations are,

`sumx_t = na^' + b^' sumu`              ...(1)

`sumux_t = a^'sumu + b^'sumu^2`      ...(2)

Here, n = 9, `sumx_t = 47, sumu= 0, sumu^2 = 60`

By putting these values in normal equations, we get

47 = 9a' + b' (0)       ...(3)

40 = a'(0) + b'(60)      ...(4)

From equation (3), we get a' = `square`

From equation (4), we get b' = `square`

∴ the equation of trend line is xt = `square`


Following table gives the number of road accidents (in thousands) due to overspeeding in Maharashtra for 9 years. Complete the following activity to find the trend by the method of least squares.

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016
Number of accidents 39 18 21 28 27 27 23 25 22

Solution:

We take origin to 18, we get, the number of accidents as follows:

Year Number of accidents xt t u = t - 5 u2 u.xt
2008 21 1 -4 16 -84
2009 0 2 -3 9 0
2010 3 3 -2 4 -6
2011 10 4 -1 1 -10
2012 9 5 0 0 0
2013 9 6 1 1 9
2014 5 7 2 4 10
2015 7 8 3 9 21
2016 4 9 4 16 16
  `sumx_t=68` - `sumu=0` `sumu^2=60` `square`

The equation of trend is xt =a'+ b'u.

The normal equations are,

`sumx_t=na^'+b^'sumu             ...(1)`

`sumux_t=a^'sumu+b^'sumu^2      ...(2)`

Here, n = 9, `sumx_t=68,sumu=0,sumu^2=60,sumux_t=-44`

Putting these values in normal equations, we get

68 = 9a' + b'(0)     ...(3)

∴ a' = `square`

-44 = a'(0) + b'(60)          ...(4)

∴ b' = `square`

The equation of trend line is given by

xt = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×