Advertisements
Advertisements
प्रश्न
Choose the correct alternative :
Solution of LPP to minimize z = 2x + 3y st. x ≥ 0, y ≥ 0, 1≤ x + 2y ≤ 10 is
पर्याय
x = 0, y = `(1)/(2)`
x = `(1)/(2)`, y = 0
x = 1, y = – 2
x = y = `(1)/(2)`
उत्तर
Z = 2x + 3y
The given inequalities are 1 ≤ x + 2y ≤ 10
i.e. x + 2y ≥ 1 and x + 2y ≤ 10
consider lines L1 and L2 where L1 : x + 2y = 1, L2 : x + 2y = 10.
For line L1 plot A`(0, 1/2)`, B(1, 0)
For line L2 plot P (0, 5), Q (10, 0).
The coordinates of origin O (0, 0) do not satisfy x + 2y ≥ 1.
Required region lies on non – origin side of L1.
The coordinates of origin O(0, 0) satisfies the inequalities x + 2y ≤ 10.
Required region lies on the origin side of L2.
Lines L1 and L2 are parallel.
ABQPA is the required feasible region
At `"A"(0, 1/2), "Z" = 0+ 3(1/2)` = 1.5
At B (1, 0), Z = 2 (1) + 0 = 2
At P (0, 5), Z = 0 + 3(5) = 15
At Q (10, 0), Z = 2 (10) + 0 = 20
The maximum value of Z is 1.5 and it occurs at `"A"(0, 1/2)` i.e. x = 0, y = `(1)/(2)`
APPEARS IN
संबंधित प्रश्न
Which of the following statements is correct?
Find the feasible solution of the following inequations:
x - 2y ≤ 2, x + y ≥ 3, - 2x + y ≤ 4, x ≥ 0, y ≥ 0
The maximum value of z = 5x + 3y subject to the constraints 3x + 5y ≤ 15, 5x + 2y ≤ 10, x, y ≥ 0 is ______.
Of all the points of the feasible region, the optimal value of z obtained at the point lies ______.
Fill in the blank :
The optimal value of the objective function is attained at the _______ points of feasible region.
Fill in the blank :
A dish washing machine holds up to 40 pieces of large crockery (x) This constraint is given by_______.
State whether the following is True or False :
The point (1, 2) is not a vertex of the feasible region bounded by 2x + 3y ≤ 6, 5x + 3y ≤ 15, x ≥ 0, y ≥ 0.
The point of which the maximum value of z = x + y subject to constraints x + 2y ≤ 70, 2x + y ≤ 90, x ≥ 0, y ≥ 0 is obtained at
Solve the Linear Programming problem graphically:
Maximize z = 3x + 5y subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0 also find the maximum value of z.
Minimize z = 6x + 21y subject to x + 2y ≥ 3, x + 4y ≥ 4, 3x + y ≥ 3, x ≥ 0, y ≥ 0 show that the minimum value of z occurs at more than two points
x − y ≤ 1, x − y ≥ 0, x ≥ 0, y ≥ 0 are the constant for the objective function z = x + y. It is solvable for finding optimum value of z? Justify?
Constraints are always in the form of ______ or ______.
A company manufactures two models of voltage stabilizers viz., ordinary and auto-cut. All components of the stabilizers are purchased from outside sources, assembly and testing is carried out at the company’s own works. The assembly and testing time required for the two models are 0.8 hours each for ordinary and 1.20 hours each for auto-cut. Manufacturing capacity 720 hours at present is available per week. The market for the two models has been surveyed which suggests a maximum weekly sale of 600 units of ordinary and 400 units of auto-cut. Profit per unit for ordinary and auto-cut models has been estimated at ₹ 100 and ₹ 150 respectively. Formulate the linear programming problem.
Solve the following linear programming problems by graphical method.
Maximize Z = 6x1 + 8x2 subject to constraints 30x1 + 20x2 ≤ 300; 5x1 + 10x2 ≤ 110; and x1, x2 ≥ 0.
Solve the following linear programming problems by graphical method.
Maximize Z = 22x1 + 18x2 subject to constraints 960x1 + 640x2 ≤ 15360; x1 + x2 ≤ 20 and x1, x2 ≥ 0.
Given an L.P.P maximize Z = 2x1 + 3x2 subject to the constrains x1 + x2 ≤ 1, 5x1 + 5x2 ≥ 0 and x1 ≥ 0, x2 ≥ 0 using graphical method, we observe
A firm manufactures pills in two sizes A and B. Size A contains 2 mgs of aspirin, 5 mgs of bicarbonate and 1 mg of codeine. Size B contains 1 mg. of aspirin, 8 mgs. of bicarbonate and 6 mgs. of codeine. It is found by users that it requires at least 12 mgs. of aspirin, 74 mgs. of bicarbonate and 24 mgs. of codeine for providing immediate relief. It is required to determine the least number of pills a patient should take to get immediate relief. Formulate the problem as a standard LLP.
For the following shaded region, the linear constraint are:
Solve the following problems by graphical method:
Maximize z = 4x + 2y subject to 3x + y ≥ 27, x + y ≥ 21, x ≥ 0 y ≥ 0
Find graphical solution for the following system of linear in equation:
x + 2y ≥ 4, 2x - y ≤ 6