हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा ११

A firm manufactures pills in two sizes A and B. Size A contains 2 mgs of aspirin, 5 mgs of bicarbonate and 1 mg of codeine. Size B contains 1 mg. of aspirin, 8 mgs. of bicarbonate and 6 mgs - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

A firm manufactures pills in two sizes A and B. Size A contains 2 mgs of aspirin, 5 mgs of bicarbonate and 1 mg of codeine. Size B contains 1 mg. of aspirin, 8 mgs. of bicarbonate and 6 mgs. of codeine. It is found by users that it requires at least 12 mgs. of aspirin, 74 mgs. of bicarbonate and 24 mgs. of codeine for providing immediate relief. It is required to determine the least number of pills a patient should take to get immediate relief. Formulate the problem as a standard LLP.

योग

उत्तर

(i) Variables: Let x1 and x2 represents the pills in two sizes A and B.

  A B Requirement
(at least)
Aspirin 2 mg 1 mg 12 mg
Bicarbonate 5 mg 8 mg 74 mg
Codeine 1 mg 6 mg 24 mg

Requirement of Aspirin 2x1 + x2 ≥ 12

Requirement of Bicarbonate 5x1 + 8x2 ≥ 74

Requirement of Codeine x1 + 6x2 ≥ 24

(ii) Objective function:

Number of pills required for a patient = x1 + x2

let Z = x1 + x2

∴ Minimize Z = x1 + x2 is the objective function.

(iii) Non-negative restrictions:

Since the number of pills of size A and B cannot be negative,

We have x1, x2 ≥ 0

Hence, the mathematical formulation of the LLP is minimize Z = x1 + x2

Subject to the constraints

2x1 + x2 ≥ 12

5x1 + 8x2 ≥ 74

x1 + 6x2 ≥ 24

x1, x2 ≥ 0

shaalaa.com
Linear Programming Problem (L.P.P.)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Operations Research - Miscellaneous Problems [पृष्ठ २५२]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
अध्याय 10 Operations Research
Miscellaneous Problems | Q 2 | पृष्ठ २५२

संबंधित प्रश्न

Solve the following LPP by graphical method:

Maximize z = 11x + 8y, subject to x ≤ 4, y ≤ 6, x + y ≤ 6, x ≥ 0, y ≥ 0


Solution of LPP to minimize z = 2x + 3y, such that x ≥ 0, y ≥ 0, 1 ≤ x + 2y ≤ 10 is ______.


Choose the correct alternative:

The feasible region is


A company manufactures two models of voltage stabilizers viz., ordinary and auto-cut. All components of the stabilizers are purchased from outside sources, assembly and testing is carried out at the company’s own works. The assembly and testing time required for the two models are 0.8 hours each for ordinary and 1.20 hours each for auto-cut. Manufacturing capacity 720 hours at present is available per week. The market for the two models has been surveyed which suggests a maximum weekly sale of 600 units of ordinary and 400 units of auto-cut. Profit per unit for ordinary and auto-cut models has been estimated at ₹ 100 and ₹ 150 respectively. Formulate the linear programming problem.


Solve the following linear programming problems by graphical method.

Maximize Z = 22x1 + 18x2 subject to constraints 960x1 + 640x2 ≤ 15360; x1 + x2 ≤ 20 and x1, x2 ≥ 0.


Solve the following linear programming problems by graphical method.

Minimize Z = 3x1 + 2x2 subject to the constraints 5x1 + x2 ≥ 10; x1 + x2 ≥ 6; x1 + 4x2 ≥ 12 and x1, x2 ≥ 0.


Solve the following linear programming problem graphically.

Minimize Z = 200x1 + 500x2 subject to the constraints: x1 + 2x2 ≥ 10; 3x1 + 4x2 ≤ 24 and x1 ≥ 0, x2 ≥ 0.


Solve the following linear programming problem graphically.

Maximize Z = 60x1 + 15x2 subject to the constraints: x1 + x2 ≤ 50; 3x1 + x2 ≤ 90 and x1, x2 ≥ 0.


Solve the following problems by graphical method:

Maximize z = 4x + 2y subject to 3x + y ≥ 27, x + y ≥ 21, x ≥ 0 y ≥ 0


Solve the following LPP by graphical method:

Maximize: z = 3x + 5y Subject to:  x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×