Advertisements
Advertisements
प्रश्न
A firm manufactures two products A and B on which the profits earned per unit are ₹ 3 and ₹ 4 respectively. Each product is processed on two machines M1 and M2. Product A requires one minute of processing time on M1 and two minutes on M2, While B requires one minute on M1 and one minute on M2. Machine M1 is available for not more than 7 hrs 30 minutes while M2 is available for 10 hrs during any working day. Formulate this problem as a linear programming problem to maximize the profit.
उत्तर
(i) Variables: Let x1 represents the product A and x2 represents the product B.
(ii) Objective function:
Profit earned from Product A = 3x1
Profit earned from Product B = 4x2
Let Z = 3x1 + 4x2
Since the profit is to be maximized, we have maximize Z = 3x1 + 4x2
(iii) Constraints:
M1 | M2 | |
Requirement for A | 1 min | 2 min |
Requirement for B | 1 min | 1 min |
M1 is available for 7 hrs 30 min = 7 × 60 + 30 = 450 min
M2 is available for 10 hrs = 10 × 60 = 600 min
∴ x1 + x2 ≤ 450 .....[for M1]
2x1 + x2 ≤ 600 ......[for M2]
(iv) Non-negative restrictions:
Since the number of products of type A and B cannot be negative, x1, x2 ≥ 0.
Hence, the mathematical formulation of the LLP is maximize
Z = 3x1 + 4x2
Subject to the constraints
x1 + x2 ≤ 450
2x1 + x2 ≤ 600
x1, x2 ≥ 0
APPEARS IN
संबंधित प्रश्न
In a cattle breading firm, it is prescribed that the food ration for one animal must contain 14. 22 and 1 units of nutrients A, B, and C respectively. Two different kinds of fodder are available. Each unit of these two contains the following amounts of these three nutrients:
Fodder → | Fodder 1 | Fodder 2 |
Nutrient ↓ | ||
Nutrients A | 2 | 1 |
Nutrients B | 2 | 3 |
Nutrients C | 1 | 1 |
The cost of fodder 1 is ₹ 3 per unit and that of fodder 2 ₹ 2. Formulate the LPP to minimize the cost.
Select the appropriate alternatives for each of the following question:
The value of objective function is maximum under linear constraints
Which of the following is correct?
If the corner points of the feasible solution are (0, 10), (2, 2) and (4, 0), then the point of minimum z = 3x + 2y is ______.
A carpenter makes chairs and tables. Profits are ₹ 140 per chair and ₹ 210 per table. Both products are processed on three machines: Assembling, Finishing and Polishing. The time required for each product in hours and availability of each machine is given by the following table:
Product → | Chair (x) | Table (y) | Available time (hours) |
Machine ↓ | |||
Assembling | 3 | 3 | 36 |
Finishing | 5 | 2 | 50 |
Polishing | 2 | 6 | 60 |
Formulate the above problem as LPP. Solve it graphically
A company manufactures two types of fertilizers F1 and F2. Each type of fertilizer requires two raw materials A and B. The number of units of A and B required to manufacture one unit of fertilizer F1 and F2 and availability of the raw materials A and B per day are given in the table below:
Raw Material\Fertilizers | F1 | F2 | Availability |
A | 2 | 3 | 40 |
B | 1 | 4 | 70 |
By selling one unit of F1 and one unit of F2, company gets a profit of ₹ 500 and ₹ 750 respectively. Formulate the problem as L.P.P. to maximize the profit.
Choose the correct alternative :
The half plane represented by 3x + 2y ≤ 0 constraints the point.
Minimize z = 7x + y subjected to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0
Which of the following can be considered as the objective function of a linear programming problem?
Sketch the graph of the following inequation in XOY co-ordinate system.
x + y ≤ 0