Advertisements
Advertisements
प्रश्न
A firm manufactures two products A and B on which the profits earned per unit are ₹ 3 and ₹ 4 respectively. Each product is processed on two machines M1 and M2. Product A requires one minute of processing time on M1 and two minutes on M2, While B requires one minute on M1 and one minute on M2. Machine M1 is available for not more than 7 hrs 30 minutes while M2 is available for 10 hrs during any working day. Formulate this problem as a linear programming problem to maximize the profit.
उत्तर
(i) Variables: Let x1 represents the product A and x2 represents the product B.
(ii) Objective function:
Profit earned from Product A = 3x1
Profit earned from Product B = 4x2
Let Z = 3x1 + 4x2
Since the profit is to be maximized, we have maximize Z = 3x1 + 4x2
(iii) Constraints:
M1 | M2 | |
Requirement for A | 1 min | 2 min |
Requirement for B | 1 min | 1 min |
M1 is available for 7 hrs 30 min = 7 × 60 + 30 = 450 min
M2 is available for 10 hrs = 10 × 60 = 600 min
∴ x1 + x2 ≤ 450 .....[for M1]
2x1 + x2 ≤ 600 ......[for M2]
(iv) Non-negative restrictions:
Since the number of products of type A and B cannot be negative, x1, x2 ≥ 0.
Hence, the mathematical formulation of the LLP is maximize
Z = 3x1 + 4x2
Subject to the constraints
x1 + x2 ≤ 450
2x1 + x2 ≤ 600
x1, x2 ≥ 0
APPEARS IN
संबंधित प्रश्न
Find the feasible solution of the following inequation:
x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0.
Find the feasible solution of the following inequations:
x - 2y ≤ 2, x + y ≥ 3, - 2x + y ≤ 4, x ≥ 0, y ≥ 0
In a cattle breading firm, it is prescribed that the food ration for one animal must contain 14. 22 and 1 units of nutrients A, B, and C respectively. Two different kinds of fodder are available. Each unit of these two contains the following amounts of these three nutrients:
Fodder → | Fodder 1 | Fodder 2 |
Nutrient ↓ | ||
Nutrients A | 2 | 1 |
Nutrients B | 2 | 3 |
Nutrients C | 1 | 1 |
The cost of fodder 1 is ₹ 3 per unit and that of fodder 2 ₹ 2. Formulate the LPP to minimize the cost.
The corner points of the feasible solution are (0, 0), (2, 0), `(12/7, 3/7)`, (0, 1). Then z = 7x + y is maximum at ______.
A carpenter makes chairs and tables. Profits are ₹ 140 per chair and ₹ 210 per table. Both products are processed on three machines: Assembling, Finishing and Polishing. The time required for each product in hours and availability of each machine is given by the following table:
Product → | Chair (x) | Table (y) | Available time (hours) |
Machine ↓ | |||
Assembling | 3 | 3 | 36 |
Finishing | 5 | 2 | 50 |
Polishing | 2 | 6 | 60 |
Formulate the above problem as LPP. Solve it graphically
In a cattle breeding firm, it is prescribed that the food ration for one animal must contain 14, 22, and 1 unit of nutrients A, B, and C respectively. Two different kinds of fodder are available. Each unit weight of these two contains the following amounts of these three nutrients:
Nutrient\Fodder | Fodder 1 | Fodder2 |
Nutrient A | 2 | 1 |
Nutrient B | 2 | 3 |
Nutrient C | 1 | 1 |
The cost of fodder 1 is ₹ 3 per unit and that of fodder ₹ 2 per unit. Formulate the L.P.P. to minimize the cost.
Choose the correct alternative :
Feasible region; the set of points which satify.
Which value of x is in the solution set of inequality − 2X + Y ≥ 17
A company manufactures two models of voltage stabilizers viz., ordinary and auto-cut. All components of the stabilizers are purchased from outside sources, assembly and testing is carried out at the company’s own works. The assembly and testing time required for the two models are 0.8 hours each for ordinary and 1.20 hours each for auto-cut. Manufacturing capacity 720 hours at present is available per week. The market for the two models has been surveyed which suggests a maximum weekly sale of 600 units of ordinary and 400 units of auto-cut. Profit per unit for ordinary and auto-cut models has been estimated at ₹ 100 and ₹ 150 respectively. Formulate the linear programming problem.
The minimum value of the objective function Z = x + 3y subject to the constraints 2x + y ≤ 20, x + 2y ≤ 20, x > 0 and y > 0 is