हिंदी

Solve the following LPP by graphical method: Maximize z = 11x + 8y, subject to x ≤ 4, y ≤ 6, x + y ≤ 6, x ≥ 0, y ≥ 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following LPP by graphical method:

Maximize z = 11x + 8y, subject to x ≤ 4, y ≤ 6, x + y ≤ 6, x ≥ 0, y ≥ 0

आलेख
योग

उत्तर

First we draw the lines AB, CD and ED whose equations are x = 4, y = 6 and x + y = 6 respectively.

Line Equation Points on the X-axis Points on the Y-axis Sign Region
AB x = 4 A(4, 0) - origin side of the line AB
CD y = 6 - D(0, 6) origin side of the line CD
EF x + y = 6 E(6, 0) D(0, 6) origin side of the line ED

The feasible region is the shaded portion OAPDO in the graph.

The vertices of the feasible region are O (0, 0), A (4, 0), P and D (0, 6)

P is point of intersection of lines x + y = 6 and x = 4.

Substituting x = 4 in x + y = 6, we get

4 + y = 6    ∴ y = 2          ∴ P is (4, 2)

∴ the corner points of feasible region are O (0, 0), A (4, 0), P (4, 2) and D (0, 6).

The values of the objective function z = 11x + 8y at these vertices are

z(O) = 11(0) + 8(0) = 0 + 0 = 0

z(a) = 11(4) + 8(0) = 44 + 0 = 44

z(P) = 11(4) + 8(2) = 44 + 16 = 60

z(D) = 11(0) + 8(6) = 48

∴ z has maximum value 60, when x = 4 and y = 2.

shaalaa.com
Linear Programming Problem (L.P.P.)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Linear Programming - Exercise 7.4 [पृष्ठ २४१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 7 Linear Programming
Exercise 7.4 | Q 1 | पृष्ठ २४१

संबंधित प्रश्न

Which of the following statements is correct?


Find the feasible solution of the following inequation:

3x + 2y ≤ 18, 2x + y ≤ 10, x ≥ 0, y ≥ 0


Find the feasible solution of the following inequation:

3x + 4y ≥ 12, 4x + 7y ≤ 28, y ≥ 1, x ≥ 0.


In a cattle breading firm, it is prescribed that the food ration for one animal must contain 14. 22 and 1 units of nutrients A, B, and C respectively. Two different kinds of fodder are available. Each unit of these two contains the following amounts of these three nutrients: 

Fodder → Fodder 1 Fodder 2
Nutrient ↓
Nutrients A 2 1
Nutrients B 2 3
Nutrients C 1 1

The cost of fodder 1 is ₹ 3 per unit and that of fodder 2 ₹ 2. Formulate the LPP to minimize the cost.


A company manufactures two types of chemicals Aand B. Each chemical requires two types of raw material P and Q. The table below shows number of units of P and Q required to manufacture one unit of A and one unit of B and the total availability of P and Q.

Chemical→ A B Availability
Raw Material ↓
P 3 2 120
Q 2 5 160

The company gets profits of ₹ 350 and ₹ 400 by selling one unit of A and one unit of B respectively. (Assume that the entire production of A and B can be sold). How many units of the chemicals A and B should be manufactured so that the company gets a maximum profit? Formulate the problem as LPP to maximize profit.


A company manufactures two types of fertilizers F1 and F2. Each type of fertilizer requires two raw materials A and B. The number of units of A and B required to manufacture one unit of fertilizer F1 and F2 and availability of the raw materials A and B per day are given in the table below:

Fertilizers→ F1 F2 Availability
Raw Material ↓
A 2 3 40
B 1 4 70

By selling one unit of F1 and one unit of F2, the company gets a profit of ₹ 500 and ₹ 750 respectively. Formulate the problem as LPP to maximize the profit.


If John drives a car at a speed of 60 km/hour, he has to spend ₹ 5 per km on petrol. If he drives at a faster speed of 90 km/hour, the cost of petrol increases ₹ 8 per km. He has ₹ 600 to spend on petrol and wishes to travel the maximum distance within an hour. Formulate the above problem as L.P.P.


Solve the following LPP by graphical method:

Minimize z = 8x + 10y, subject to 2x + y ≥ 7, 2x + 3y ≥ 15, y ≥ 2, x ≥ 0, y ≥ 0.


Objective function of LPP is ______.


The point of which the maximum value of x + y subject to the constraints x + 2y ≤  70, 2x + y ≤ 95, x, ≥ 0, y ≥ 0 is is obtained at ______.


The half-plane represented by 4x + 3y >14 contains the point ______.


Solve the following LPP:

Maximize z = 6x + 10y subject to 3x + 5y ≤ 10, 5x + 3y ≤ 15, x ≥ 0, y ≥ 0.


Solve the following LPP:

Maximize z =60x + 50y  subject to

x + 2y ≤ 40, 3x + 2y ≤ 60, x ≥ 0, y ≥ 0.


A chemical company produces a chemical containing three basic elements A, B, C, so that it has at least 16 litres of A, 24 litres of B and 18 litres of C. This chemical is made by mixing two compounds I and II. Each unit of compound I has 4 litres of A, 12 litres of B and 2 litres of C. Each unit of compound II has 2 litres of A, 2 litres of B and 6 litres of C. The cost per unit of compound I is ₹ 800 and that of compound II is ₹ 640. Formulate the problems as LPP and solve it to minimize the cost.


Solve the following L.P.P. by graphical method:

Maximize: Z = 4x + 6y

Subject to 3x + 2y ≤ 12, x + y ≥ 4, x, y ≥ 0.


Choose the correct alternative :

Which of the following is correct?


Choose the correct alternative :

Feasible region; the set of points which satify.


State whether the following is True or False :

The point (1, 2) is not a vertex of the feasible region bounded by 2x + 3y ≤ 6, 5x + 3y ≤ 15, x ≥ 0, y ≥ 0.


State whether the following is True or False :

The feasible solution of LPP belongs to only quadrant I.


The point of which the maximum value of z = x + y subject to constraints x + 2y ≤ 70, 2x + y ≤ 90, x ≥ 0, y ≥ 0 is obtained at


Solve the Linear Programming problem graphically:

Maximize z = 3x + 5y subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0 also find the maximum value of z.


Maximize z = −x + 2y subjected to constraints x + y ≥ 5, x ≥ 3, x + 2y ≥ 6, y ≥ 0 is this LPP solvable? Justify your answer.


Choose the correct alternative:

Z = 9x + 13y subjected to constraints 2x + 3y ≤ 18, 2x + y ≤ 10, 0 ≤ x, y was found to be maximum at the point


A company produces two types of products say type A and B. Profits on the two types of product are ₹ 30/- and ₹ 40/- per kg respectively. The data on resources required and availability of resources are given below.

  Requirements Capacity available per month
Product A Product B
Raw material (kgs) 60 120 12000
Machining hours/piece 8 5 600
Assembling (man hours) 3 4 500

Formulate this problem as a linear programming problem to maximize the profit.


Solve the following linear programming problems by graphical method.

Maximize Z = 40x1 + 50x2 subject to constraints 3x1 + x2 ≤ 9; x1 + 2x2 ≤ 8 and x1, x2 ≥ 0.


Solve the following linear programming problem graphically.

Maximize Z = 60x1 + 15x2 subject to the constraints: x1 + x2 ≤ 50; 3x1 + x2 ≤ 90 and x1, x2 ≥ 0.


The values of θ satisfying sin7θ = sin4θ - sinθ and 0 < θ < `pi/2` are ______


The optimal value of the objective function is attained at the ______ of feasible region.


Solution which satisfy all constraints is called ______ solution.


Solve the following LPP by graphical method:

Maximize: z = 3x + 5y Subject to:  x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0


Sketch the graph of the following inequation in XOY co-ordinate system.

2y - 5x ≥ 0


Find graphical solution for the following system of linear in equation:

x + 2y ≥ 4, 2x - y ≤ 6


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×