हिंदी

Find the feasible solution of the following inequation: 3x + 2y ≤ 18, 2x + y ≤ 10, x ≥ 0, y ≥ 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the feasible solution of the following inequation:

3x + 2y ≤ 18, 2x + y ≤ 10, x ≥ 0, y ≥ 0

सारिणी
आलेख

उत्तर

Given inequalities 3x + 2y ≤ 18 2x + y ≤ 10
Corresponding equalities 3x + 2y = 18 2x + y = 10
Intersection of line with X-axis A(6, 0) C(5, 0)
Intersection of line with Y-axis B(0, 9) D(0, 10)
Origin test

3(0) + 2(0) ≤ 18

i.e., 0 ≤ 18

which is true

2(0) + 0 ≤ 10

i.e., 0 ≤ 10

which is true

Region Origin side of the line Origin side of the line

x ≥ 0, y ≥ 0 represent 1st quadrant.

The shaded portion represents the feasible solution.

shaalaa.com
Linear Programming Problem (L.P.P.)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Linear Programming - Exercise 7.2 [पृष्ठ २३४]

संबंधित प्रश्न

In a cattle breading firm, it is prescribed that the food ration for one animal must contain 14. 22 and 1 units of nutrients A, B, and C respectively. Two different kinds of fodder are available. Each unit of these two contains the following amounts of these three nutrients: 

Fodder → Fodder 1 Fodder 2
Nutrient ↓
Nutrients A 2 1
Nutrients B 2 3
Nutrients C 1 1

The cost of fodder 1 is ₹ 3 per unit and that of fodder 2 ₹ 2. Formulate the LPP to minimize the cost.


A manufacturer produces bulbs and tubes. Each of these must be processed through two machines M1 and M2. A package of bulbs requires 1 hour of work on Machine M1 and 3 hours of work on Machine M2. A package of tubes requires 2 hours on Machine M1 and 4 hours on Machine M2. He earns a profit of ₹ 13.5 per package of bulbs and ₹ 55 per package of tubes. Formulate the LPP to maximize the profit, if he operates the machine M1, for almost 10 hours a day and machine M2 for almost 12 hours a day.


A doctor has prescribed two different units of foods A and B to form a weekly diet for a sick person. The minimum requirements of fats, carbohydrates and proteins are 18, 28, 14 units respectively. One unit of food A has 4 units of fat, 14 units of carbohydrates and 8 units of protein. One unit of food B has 6 units of fat, 12 units of carbohydrates and 8 units of protein. The price of food A is ₹ 4.5 per unit and that of food B is ₹ 3.5 per unit. Form the LPP, so that the sick person’s diet meets the requirements at a minimum cost.


Solve the following LPP by graphical method:

Maximize z = 4x + 6y, subject to 3x + 2y ≤ 12, x + y ≥ 4, x, y ≥ 0.


Which of the following is correct?


Of all the points of the feasible region, the optimal value of z obtained at the point lies ______.


Solution of LPP to minimize z = 2x + 3y, such that x ≥ 0, y ≥ 0, 1 ≤ x + 2y ≤ 10 is ______.


The corner points of the feasible solution given by the inequation x + y ≤ 4, 2x + y ≤ 7, x ≥ 0, y ≥ 0 are ______.


If the corner points of the feasible solution are (0, 10), (2, 2) and (4, 0), then the point of minimum z = 3x + 2y is ______.


Solve each of the following inequations graphically using XY-plane:

5y - 12 ≥ 0


Sketch the graph of the following inequation in XOY co-ordinate system:

|x + 5| ≤ y


Solve the following LPP:

Minimize z = 4x + 2y

Subject to 3x + y ≥ 27, x + y ≥ 21, x + 2y ≥ 30, x ≥ 0, y ≥ 0


A carpenter makes chairs and tables. Profits are ₹ 140 per chair and ₹ 210 per table. Both products are processed on three machines: Assembling, Finishing and Polishing. The time required for each product in hours and availability of each machine is given by the following table:

Product → Chair (x) Table (y) Available time (hours)
Machine ↓
Assembling 3 3 36
Finishing 5 2 50
Polishing 2 6 60

Formulate the above problem as LPP. Solve it graphically


A company produces mixers and food processors. Profit on selling one mixer and one food processor is Rs 2,000 and Rs 3,000 respectively. Both the products are processed through three machines A, B, C. The time required in hours for each product and total time available in hours per week on each machine arc as follows:

Machine  Mixer Food Processor Available time
A 3 3 36
B 5 2 50
C 2 6 60

How many mixers and food processors should be produced in order to maximize the profit?


A manufacturing firm produces two types of gadgets A and B, which are first processed in the foundry and then sent to machine shop for finishing. The number of man hours of labour required in each shop for production of A and B and the number of man hours available for the firm are as follows:

Gadgets Foundry  Machine Shop
A 10 5
B 6 4
Time available (hours) 60 35

Profit on the sale of A is ₹ 30 and B is ₹ 20 per unit. Formulate the L.P.P. to have maximum profit.


A printing company prints two types of magazines A and B. The company earns ₹ 10 and ₹ 15 on magazines A and B per copy. These are processed on three machines I, II, III. Magazine A requires 2 hours on Machine I, 5 hours on Machine II and 2 hours on Machine III. Magazine B requires 3 hours on Machine I, 2 hours on Machine II and 6 hours on Machine III. Machines I, II, III are available for 36, 50, 60 hours per week respectively. Formulate the Linear programming problem to maximize the profit.


Solve the following L.P.P. by graphical method:

Maximize: Z = 4x + 6y

Subject to 3x + 2y ≤ 12, x + y ≥ 4, x, y ≥ 0.


Choose the correct alternative :

Which of the following is correct?


Choose the correct alternative :

Feasible region; the set of points which satify.


Choose the correct alternative :

The corner points of the feasible region are (0, 0), (2, 0), `(12/7, 3/7)` and (0,1) then the point of maximum z = 7x + y


Fill in the blank :

The optimal value of the objective function is attained at the _______ points of feasible region.


Fill in the blank :

“A gorage employs eight men to work in its shownroom and repair shop. The constraints that there must be at least 3 men in showroom and at least 2 men in repair shop are ______ and _______ respectively.


Fill in the blank :

A dish washing machine holds up to 40 pieces of large crockery (x) This constraint is given by_______.


Maximize z = 7x + 11y subject to 3x + 5y ≤ 26, 5x + 3y ≤ 30, x ≥ 0, y ≥ 0


Solve the Linear Programming problem graphically:

Maximize z = 3x + 5y subject to x + 4y ≤ 24, 3x + y ≤ 21, x + y ≤ 9, x ≥ 0, y ≥ 0 also find the maximum value of z.


Minimize z = 7x + y subjected to 5x + y ≥ 5, x + y ≥ 3, x ≥ 0, y ≥ 0


Maximize z = −x + 2y subjected to constraints x + y ≥ 5, x ≥ 3, x + 2y ≥ 6, y ≥ 0 is this LPP solvable? Justify your answer.


The constraint that in a particular XII class, number of boys (y) are less than number of girls (x) is given by ______


A company produces two types of pens A and B. Pen A is of superior quality and pen B is of lower quality. Profits on pens A and B are ₹ 5 and ₹ 3 per pen respectively. Raw materials required for each pen A is twice as that of pen B. The supply of raw material is sufficient only for 1000 pens per day. Pen A requires a special clip and only 400 such clips are available per day. For pen B, only 700 clips are available per day. Formulate this problem as a linear programming problem.


Solve the following linear programming problems by graphical method.

Maximize Z = 22x1 + 18x2 subject to constraints 960x1 + 640x2 ≤ 15360; x1 + x2 ≤ 20 and x1, x2 ≥ 0.


A solution which maximizes or minimizes the given LPP is called


Which of the following can be considered as the objective function of a linear programming problem?


Solve the following LP.P.

Maximize z = 13x + 9y,

Subject to 3x + 2y ≤ 12,

x + y ≥ 4,

x ≥ 0,

y ≥ 0.


The optimal value of the objective function is attained at the ______ of feasible region.


The set of feasible solutions of LPP is a ______.


Solution which satisfy all constraints is called ______ solution.


For the following shaded region, the linear constraint are:


Find graphical solution for the following system of linear in equation:

x + 2y ≥ 4, 2x - y ≤ 6


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×