हिंदी

Solve graphically : 2x + y≥ 5 and x-y≤ 1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve graphically : 2x + y ≥ 5 and x – y ≤ 1

आलेख

उत्तर

First we draw the lines AB and CD whose equations are 2x + y = 5 and x – y = 1 respectively.

Line Equation Points on the X-axis Points on the Y-axis Sign Region
AB 2x + y = 5 A(2.5, 0) B(0, 5) non-origin side of line AB
CD x – y = 1 C(1, 0) D(0, –1) origin side of line CD


The solution set of the given system of inequations is shaded in the graph.

shaalaa.com
Linear Inequations in Two Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Linear Programming - Exercise 7.1 [पृष्ठ २३३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 7 Linear Programming
Exercise 7.1 | Q 5.5 | पृष्ठ २३३

संबंधित प्रश्न

Solve graphically: x ≥ 0 


Solve graphically : y ≥ 0


Solve graphically: x ≤ 0 and y ≥ 0


Solve graphically : x ≥ 0 and y ≤ 0.


Solve graphically: 2x – 3 ≥ 0


Solve graphically : 2y – 5 ≥  0


Solve graphically : x +2y ≤ 6


Solve graphically : 2x – 5y ≥10


Solve graphically : 5x – 3y ≤ 0


Solve graphically : 2x + y ≥ 2 and x – y ≤ 1


Solve graphically : x – y ≤ 2 and x + 2y ≤ 8


The corner points of the feasible solutions are (0, 0) (3, 0) (2, 1) (0, 7/3) the maximum value of Z = 4x + 5y is


The value of objective function is maximum under linear constraints


A solution set of the inequality x ≥ 0


Show the solution set of inequations 4x – 5y ≤ 20 graphically


If the point (x1, y1) satisfies px - qy < 13, then the solution set represented by the inequation is ______ 


For the constraint of a linear optimizing function z = 3x1 + 11x2, given by 2x1 + x2 ≤ 2, 4x1 + x2 ≥ 4 and x1, x2 ≥ 0 


Let p and q be the statements:

p: 3x3 + 8y3 ≥ 15, q: 5x + 2y < 11 

Then, which of the following is true?


The shaded region is represented by the in equations ______ 

 


The maximum value of z = 7x + 6y.
Subject to the constraints x ≤ 45, y ≤ 55 and x ≥ 0, y ≥ 0 is ______.


Region represented by the inequalities x ≥ 0, y ≤ 0 is ______.


Determine the system of linear equation for which the solution set is the shaded region in the following figure ______.


Solution set of the inequality y ≥ 0 is ______.


The set of real x satisfying the inequality `(5 - 2x)/3 ≤ x/6 - 5` is [a, ∞). The value of ‘a’ is ______.


Which of the following linear inequalities satisfy the shaded region of the given figure?


The object function z = 4x1 + 5x2, subject to 2x1 + x2 ≥ 7, 2x1 + 3x2 ≤ 15, x2 ≤ 3, x1, x2 ≥ 0 has minimum value at the point is ______.


The objective function of LPP defined over the convex set attains it optimum value at ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×