Advertisements
Advertisements
प्रश्न
Solve graphically : 2x + 3y≤ 6 and x + 4y ≥ 4
उत्तर
First we draw the lines AB and CD whose equations are 2x + 3y = 6 and x + 4y = 4 respectively.
Line | Equation | Points on the X-axis | Points on the Y-axis | Sign | Region |
AB | 2x + 3y = 6 | A(3, 0) | B(0, 2) | ≤ | origin side of line AB |
CD | x + 4y = 4 | C(4, 0) | D(0. 1) | ≥ | non-origin side of line CD |
The solution set of the given system of inequalities shaded in the graph.
APPEARS IN
संबंधित प्रश्न
Solve graphically : x ≤ 0
Solve graphically: x ≤ 0 and y ≥ 0
Solve graphically : x ≤ 0 and y ≤ 0
Solve graphically : x ≥ 0 and y ≤ 0.
Solve graphically: 2x – 3 ≥ 0
Solve graphically : 3x + 4 ≤ 0
Solve graphically : 5y + 3 ≤ 0
Solve graphically : x +2y ≤ 6
Solve graphically : 2x – 5y ≥10
Solve graphically: 3x + 2y ≥ 0
Solve graphically : 5x – 3y ≤ 0
Solve graphically : 2x + y ≥ 2 and x – y ≤ 1
Solve graphically : x – y ≤ 2 and x + 2y ≤ 8
The half plane represented by 4x + 3y >14 contains the point
The value of objective function is maximum under linear constraints
A solution set of the inequality x ≥ 0
Show the solution set of inequations 4x – 5y ≤ 20 graphically
If the point (x1, y1) satisfies px - qy < 13, then the solution set represented by the inequation is ______
Solution of the LPP minimize z = 7x + 2y subject to x + y ≥ 60, x - 2y ≥ 0, x + 2y ≤ 120, x, y ≥ 0 is ______
The shaded region is represented by the in equations ______
Determine the system of linear equation for which the solution set is the shaded region in the following figure ______.
Solution set of the inequality y ≥ 0 is ______.
The set of real x satisfying the inequality `(5 - 2x)/3 ≤ x/6 - 5` is [a, ∞). The value of ‘a’ is ______.
Which of the following linear inequalities satisfy the shaded region of the given figure?
The objective function of LPP defined over the convex set attains it optimum value at ______.