हिंदी

Solve graphically: x ≤ 0 and y ≥ 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve graphically: x ≤ 0 and y ≥ 0

आलेख

उत्तर

x ≤ 0, y ≥ 0

Consider the lines whose equation are x = 0 and y = 0. 

These represent the equations of the Y-axis and X-axis, respectively, which divide the plane into four parts.

Since x ≤ 0, y ≥ 0, the solution set is in the second quadrant which is shaded in the graph.

shaalaa.com
Linear Inequations in Two Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Linear Programming - Exercise 7.1 [पृष्ठ २३२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 7 Linear Programming
Exercise 7.1 | Q 2.2 | पृष्ठ २३२

संबंधित प्रश्न

Solve graphically: x ≥ 0 


Solve graphically : x ≥ 0 and y ≥ 0


Solve graphically : x ≥ 0 and y ≤ 0.


Solve graphically: 2x – 3 ≥ 0


Solve graphically : 2y – 5 ≥  0


Solve graphically : 5y + 3 ≤ 0


Solve graphically : x +2y ≤ 6


Solve graphically : 2x – 5y ≥10


Solve graphically : 5x – 3y ≤ 0


Solve graphically : 2x + y ≥ 2 and x – y ≤ 1


Solve graphically : x – y ≤ 2 and x + 2y ≤ 8


Solve graphically : 2x + y ≥ 5 and x – y ≤ 1


The corner points of the feasible solutions are (0, 0) (3, 0) (2, 1) (0, 7/3) the maximum value of Z = 4x + 5y is


The half plane represented by 4x + 3y >14 contains the point


If a corner point of the feasible solutions are (0, 10) (2, 2) (4, 0) (3, 2) then the point of minimum Z = 3x + 2y is


A solution set of the inequality x ≥ 0


Check the ordered points (1, −1), (2, −1) is a solution of 2x + 3y − 6 ≤ 0


Show the solution set of inequations 4x – 5y ≤ 20 graphically


For the constraint of a linear optimizing function z = 3x1 + 11x2, given by 2x1 + x2 ≤ 2, 4x1 + x2 ≥ 4 and x1, x2 ≥ 0 


Solution of the LPP minimize z = 7x + 2y subject to x + y ≥ 60, x - 2y ≥ 0, x + 2y ≤ 120, x, y ≥ 0 is ______ 


The shaded region is represented by the in equations ______ 

 


The maximum value of z = 7x + 6y.
Subject to the constraints x ≤ 45, y ≤ 55 and x ≥ 0, y ≥ 0 is ______.


Region represented by the inequalities x ≥ 0, y ≤ 0 is ______.


If S1 and S2 are respectively the sets of local minimum and local maximum points of the function, f(x) = 9x4 + 12x3 - 36x2 + 25, x ∈ R, then ______ 


Determine the system of linear equation for which the solution set is the shaded region in the following figure ______.


Solution set of the inequality y ≥ 0 is ______.


The set of real x satisfying the inequality `(5 - 2x)/3 ≤ x/6 - 5` is [a, ∞). The value of ‘a’ is ______.


Which of the following linear inequalities satisfy the shaded region of the given figure?


The objective function of LPP defined over the convex set attains it optimum value at ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×