English

Solve graphically : 2x + y≥ 5 and x-y≤ 1 - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve graphically : 2x + y ≥ 5 and x – y ≤ 1

Graph

Solution

First we draw the lines AB and CD whose equations are 2x + y = 5 and x – y = 1 respectively.

Line Equation Points on the X-axis Points on the Y-axis Sign Region
AB 2x + y = 5 A(2.5, 0) B(0, 5) non-origin side of line AB
CD x – y = 1 C(1, 0) D(0, –1) origin side of line CD


The solution set of the given system of inequations is shaded in the graph.

shaalaa.com
Linear Inequations in Two Variables
  Is there an error in this question or solution?
Chapter 7: Linear Programming - Exercise 7.1 [Page 233]

RELATED QUESTIONS

Solve graphically : y ≥ 0


Solve graphically : x ≤ 0 


Solve graphically : y ≤ 0


Solve graphically : x ≥ 0 and y ≥ 0


Solve graphically: x ≤ 0 and y ≥ 0


Solve graphically: 2x – 3 ≥ 0


Solve graphically : 3x + 4 ≤ 0


Solve graphically : 5y + 3 ≤ 0


Solve graphically : x +2y ≤ 6


Solve graphically : 5x – 3y ≤ 0


Solve graphically : x + y ≥ 6 and x + 2y ≤ 10


The corner points of the feasible solutions are (0, 0) (3, 0) (2, 1) (0, 7/3) the maximum value of Z = 4x + 5y is


The half plane represented by 4x + 3y >14 contains the point


If a corner point of the feasible solutions are (0, 10) (2, 2) (4, 0) (3, 2) then the point of minimum Z = 3x + 2y is


A solution set of the inequality x ≥ 0


Check the ordered points (1, −1), (2, −1) is a solution of 2x + 3y − 6 ≤ 0


If the point (x1, y1) satisfies px - qy < 13, then the solution set represented by the inequation is ______ 


Solution of the LPP minimize z = 7x + 2y subject to x + y ≥ 60, x - 2y ≥ 0, x + 2y ≤ 120, x, y ≥ 0 is ______ 


The shaded region is represented by the in equations ______ 

 


The maximum value of z = 7x + 6y.
Subject to the constraints x ≤ 45, y ≤ 55 and x ≥ 0, y ≥ 0 is ______.


Region represented by the inequalities x ≥ 0, y ≤ 0 is ______.


If S1 and S2 are respectively the sets of local minimum and local maximum points of the function, f(x) = 9x4 + 12x3 - 36x2 + 25, x ∈ R, then ______ 


Determine the system of linear equation for which the solution set is the shaded region in the following figure ______.


Solution set of the inequality y ≥ 0 is ______.


The set of real x satisfying the inequality `(5 - 2x)/3 ≤ x/6 - 5` is [a, ∞). The value of ‘a’ is ______.


Which of the following linear inequalities satisfy the shaded region of the given figure?


The object function z = 4x1 + 5x2, subject to 2x1 + x2 ≥ 7, 2x1 + 3x2 ≤ 15, x2 ≤ 3, x1, x2 ≥ 0 has minimum value at the point is ______.


The objective function of LPP defined over the convex set attains it optimum value at ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×