Advertisements
Advertisements
प्रश्न
A cylindrical bucket, 32 cm high and with radius of base 18 cm, is filled with sand. This bucket is emptied out on the ground and a conical heap of sand is formed. If the height of the conical heap is 24 cm, find the radius and slant height of the heap.
उत्तर
Let the radius of the cone by r
Now, Volume cylindrical bucket = Volume of conical heap of sand
\[\Rightarrow \pi \left( 18 \right)^2 \left( 32 \right) = \frac{1}{3}\pi r^2 \left( 24 \right)\]
\[ \Rightarrow \left( 18 \right)^2 \left( 32 \right) = 8 r^2 \]
\[ \Rightarrow r^2 = 18 \times 18 \times 4\]
\[ \Rightarrow r^2 = 1296\]
\[ \Rightarrow r = 36 cm\]
Let the slant height of the cone be l.
Thus , the slant height is given by
\[l = \sqrt{\left( 24 \right)^2 + \left( 36 \right)^2}\]
\[ = \sqrt{576 + 1296}\]
\[ = \sqrt{1872}\]
\[ = 12\sqrt{13} cm\]
APPEARS IN
संबंधित प्रश्न
How many silver coins, 1.75 cm in diameter and of thickness 2 mm, must be melted to form a cuboid of dimensions 5.5 cm × 10 cm × 3.5 cm? [Use π=22/7]
A farmer connects a pipe of internal diameter 20 cm form a canal into a cylindrical tank in his field, which is 10 m in diameter and 2 m deep. If water flows through the pipe at the rate of 3 km/h, in how much time will the tank be filled?
Three cubes of a metal whose edges are in the ratios 3 : 4 : 5 are melted and converted into a single cube whose diagonal is \[12\sqrt{3}\]. Find the edges of the three cubes.
A solid cylinder of diameter 12 cm and height 15 cm is melted and recast into toys with the shape of a right circular cone mounted on a hemisphere of radius 3 cm.If the height of the toy is 12 cm, find the number of toys so formed.
Two cones with same base radius 8 cm and height 15 cm are joined together along their bases. Find the surface area of the shape formed.
If four times the sum of the areas of two circular faces of a cylinder of height 8 cm is equal to twice the curve surface area, then diameter of the cylinder is
During conversion of a solid from one shape to another, the volume of the new shape will ______.
A cylindrical bucket, 32 cm high and 18 cm of radius of the base, is filled with sand. This bucket is emptied on the ground and a conical heap of sand is formed. If the height of the conical heap is 24 cm, find the radius and slant height of the heap.
How many spherical lead shots of diameter 4 cm can be made out of a solid cube of lead whose edge measures 44 cm.
The volume of a right circular cone whose area of the base is 156 cm2 and the vertical height is 8 cm, is ______.