Advertisements
Advertisements
प्रश्न
A diver in a swimming pool bends his head before diving. It ______
विकल्प
Increases his linear velocity
Decreases his angular velocity
Increases his moment of inertia
Decreases his moment of inertia
उत्तर
A diver in a swimming pool bends his head before diving. It Decreases his moment of inertia.
संबंधित प्रश्न
The moment of inertia of a uniform circular disc about a tangent in its own plane is 5/4MR2 where M is the mass and R is the radius of the disc. Find its moment of inertia about an axis through its centre and perpendicular to its plane.
A uniform disc of radius ' a' and mass 'm' is rotating freely with angular speed 'ω' in a horizontal plane, about a smooth fixed vertical axis through its centre. A pa1ticle of mass 'm' is then suddenly attached to the rim of the disc and rotates with it. The new angular speed is ______
The moment of inertia of a uniform thin rod of length L and mass M about an axis passing through a point at a distance of L/3 from one of its ends and perpendicular to the rod is ______
Two rods, each of mass m and length l, are joined as shown in the figure. Moment of inertia of system about an axis passing through one end of the rod, i.e. O, and perpendicular to the plane is ____________.
Three identical rods each of mass 'M' and length 'L' are joined to form a symbol 'H'. The moment of inertia of the system about one of the sides of 'H' is ______.
A particle is performing U.C.M. along the circumference of a circle of diameter 50 cm with frequency 2 Hz. The acceleration of the particle in m/s2 is ______.
From a disc of mass 'M' and radius 'R', a circular hole of diameter 'R' is cut whose rim passes through the center. The moment of inertia of the remaining part of the ruse about perpendicular axis passing through the center is ______.
A rod of length 1 m and mass `1/2` kg rotates at an 2 angular speed of 6 rad s-1 about one of its ends. The kinetic energy of the rod is ______.
Three rings, each of mass P and radius Q, are arranged as shown in the figure. The moment of inertia of the arrangement about YY' will be ______.
The moment of inertia of a sphere is 20 kg-m2 about the diameter. The moment of inertia about any tangent is ____________.
A disc of mass 100 kg and radius 1 m is rotating at 300 rpm. The torque required to rotate the disc in opposite direction with same speed in time 50 second is ______.
Two discs having moment of inertia I1 and I2 are made from same material have same mass. Their thickness and radii are t1, t2, and R1, R2 respectively. The relation between moment of inertia of each disc about an axis passing through its centre and perpendicular to its plane and its thickness is ______.
A thin uniform rod of length 'L' and mass 'M' is bent at the middle point 'O' at an angle of 45° as shown in the figure. The moment of inertia of the system about an axis passing through 'O' and perpendicular to the plane of the bent rod, is ______.
Figure shows triangular lamina which can rotate about different axis of rotation. Moment of inertia is maximum about the axis ______.
Moment of inertia of the rod about an axis passing through the centre and perpendicular to its length is 'I1'. The same rod is bent into a ring and its moment of inertia about the diameter is 'I2', then `"I"_2/"I"_1` is ______.
The moment of inertia of a ring about an axis passing through its centre and perpendicular to its plane is 'I'. It is rotating with angular velocity 'ω'. Another identical ring is gently placed on it so that their centres coincide. If both the ring are rotating about the same axis, then loss in kinetic energy is ______.
A uniform disc of mass 4 kg has radius of 0.4 m. Its moment of inertia about an axis passing through a point on its circumference and perpendicular to its plane is ______.
A disc rolls down a smooth inclined plane without slipping. An inclined plane makes an angle of 60° with the vertical. The linear acceleration of the disc along the inclined plane is ______.
(g = acceleration due to gravity, sin 30° =cos 60° `=1/2,` sin 60° = cos 30° `=sqrt3/2`)
A thin circular ring of mas 'M' and radius 'R' is rotating about a transverse axis passing through its centre with constant angular velocity 'ω'. Two objects each of mass 'm' are attached gently to the opposite ends of a diameter of the ring. What is the new angular velocity?
Calculate the moment of inertia of a uniform disc of mass 10 kg and radius 60 cm about an axis perpendicular to its length and passing through its center.
A disc of radius R and thickness `"R"/6` has moment of inertia/about an axis passing through its centre and perpendicular to its plane. Disc is melted and recast into a solid sphere. The moment of inertia of a sphere about its diameter is ______.
The moment of inertia of a body about a given axis is 1.2 kg-m2. Initially, the body is at rest. In order to produce, a rotational kinetic energy of 1500 J, an acceleration of 25 rad/s2 must be applied about that axis for a duration of ______.