Advertisements
Advertisements
प्रश्न
A diver in a swimming pool bends his head before diving. It ______
पर्याय
Increases his linear velocity
Decreases his angular velocity
Increases his moment of inertia
Decreases his moment of inertia
उत्तर
A diver in a swimming pool bends his head before diving. It Decreases his moment of inertia.
संबंधित प्रश्न
The moment of inertia of a uniform circular disc about a tangent in its own plane is 5/4MR2 where M is the mass and R is the radius of the disc. Find its moment of inertia about an axis through its centre and perpendicular to its plane.
Two wheels of the moment of inertia 4 kgm2 rotate side by side at the rate of 120 rev/min and 240 rev/min respectively in the opposite directions. If now both the wheels are coupled by means of a weightless shaft so that both the wheels rotate with a common angular speed. Calculate the new speed of rotation.
A uniform disc of radius ' a' and mass 'm' is rotating freely with angular speed 'ω' in a horizontal plane, about a smooth fixed vertical axis through its centre. A pa1ticle of mass 'm' is then suddenly attached to the rim of the disc and rotates with it. The new angular speed is ______
Surface density of charge on a charged conducting sphere of radius R in terms of electric field intensity E at a distance r in free space is ____________.
(r > R, ε0 = permittivity of free space)
Three points masses, each of mass m are placed at the corners of an equilateral triangle of side l. The moment of inertia of the system about an axis passing through one of the vertices and parallel to the side joining other two vertices, will be ______.
If radius of the solid sphere is doubled by keeping its mass constant, the ratio of their moment of inertia about any of its diameter is ______.
Two rods, each of mass m and length l, are joined as shown in the figure. Moment of inertia of system about an axis passing through one end of the rod, i.e. O, and perpendicular to the plane is ____________.
Four solid spheres each of mass M and radius R are placed with their centres on the four comers of a rectangle. If b is a breadth of rectangle and its length is twice of its breadth, then find moment of inertia of the system about an axis along one of the breadth of the rectangle.
Three identical rods each of mass 'M' and length 'L' are joined to form a symbol 'H'. The moment of inertia of the system about one of the sides of 'H' is ______.
A particle is performing U.C.M. along the circumference of a circle of diameter 50 cm with frequency 2 Hz. The acceleration of the particle in m/s2 is ______.
A flywheel of mass 20 kg and radius 5 cm is revolving at a speed of 300 rpm. Its kinetic energy is ______.
From a disc of mass 'M' and radius 'R', a circular hole of diameter 'R' is cut whose rim passes through the center. The moment of inertia of the remaining part of the ruse about perpendicular axis passing through the center is ______.
A cord is wound round the circumference of a wheel of radius 'r'. The axis of the wheel is horizontal and moment of inertia about it is T. A block of mass 'm' is attached to free end of the cord, initially at rest. When the wheel rotates and the block moves vertically downwards through distance 'h', the angular velocity of the wheel will be ______.
(Neglect the mass of cord, g =acceleration due to gravity)
The moment of inertia of a body initially at rest about a given axis is 1.2 kg m2. On applying an acceleration of 25 rad/s2, the time it will take to acquire a rotational kinetic energy of 1500 J is ____________.
A disc of mass 100 kg and radius 1 m is rotating at 300 rpm. The torque required to rotate the disc in opposite direction with same speed in time 50 second is ______.
Two discs having moment of inertia I1 and I2 are made from same material have same mass. Their thickness and radii are t1, t2, and R1, R2 respectively. The relation between moment of inertia of each disc about an axis passing through its centre and perpendicular to its plane and its thickness is ______.
Moment of inertia of the rod about an axis passing through the centre and perpendicular to its length is 'I1'. The same rod is bent into a ring and its moment of inertia about the diameter is 'I2', then `"I"_2/"I"_1` is ______.
The moment of inertia of a ring about an axis passing through its centre and perpendicular to its plane is 'I'. It is rotating with angular velocity 'ω'. Another identical ring is gently placed on it so that their centres coincide. If both the ring are rotating about the same axis, then loss in kinetic energy is ______.
Calculate the moment of inertia of a uniform disc of mass 10 kg and radius 60 cm about an axis perpendicular to its length and passing through its center.
The moment of inertia of a circular disc of mass M and radius R about an axis passing through the centre of mass is I0. The moment of inertia of another circular disc of same mass and thickness but half the density about the same axis is ______.
The moment of inertia of a body about a given axis is 1.2 kg-m2. Initially, the body is at rest. In order to produce, a rotational kinetic energy of 1500 J, an acceleration of 25 rad/s2 must be applied about that axis for a duration of ______.
The moment of inertia (MI) of a disc of radius R and mass M about its central axis is ______.