Advertisements
Advertisements
प्रश्न
A heavy nucleus P of mass number 240 and binding energy of 7.6 MeV per nucleon splits into two nuclei Q and R of mass number 110 and 130 and binding energy per nucleon of 8.5 MeV and 8.4 MeV respectively. Calculate the energy released in fission.
उत्तर
The nuclear reaction,
\[\ce{P^240 -> Q^110 + R^130 + Q}\]
As per the given data energy released in the fission,
Q = 110 × 8.5 + 130 × 8.4 - 240 × 7.6
Q = 203 MeV
Hence, it is the energy released in the fission.
APPEARS IN
संबंधित प्रश्न
Suppose, we think of fission of a `""_26^56"Fe"` nucleus into two equal fragments `""_13^28"Al"`. Is the fission energetically possible? Argue by working out Q of the process. Given `"m"(""_26^56 "Fe") = 55.93494 "u"` and `"m"(""_13^28 "Al") = 27.98191 "u"`.
The fission properties of `""_94^239"Pu"` are very similar to those of `""_92^235 "U"`. The average energy released per fission is 180 MeV. How much energy, in MeV, is released if all the atoms in 1 kg of pure `""_94^239 "Pu"` undergo fission?
A 1000 MW fission reactor consumes half of its fuel in 5.00 y. How much `""_92^235"U"` did it contain initially? Assume that the reactor operates 80% of the time, that all the energy generated arises from the fission of `""92^235"U"` and that this nuclide is consumed only by the fission process.
Suppose India had a target of producing by 2020 AD, 200,000 MW of electric power, ten percent of which was to be obtained from nuclear power plants. Suppose we are given that, on an average, the efficiency of utilization (i.e. conversion to electric energy) of thermal energy produced in a reactor was 25%. How much amount of fissionable uranium would our country need per year by 2020? Take the heat energy per fission of 235U to be about 200MeV.
As compared to 12C atom, 14C atom has
As the mass number A increases, which of the following quantities related to a nucleus do not change?
A uranium reactor develops thermal energy at a rate of 300 MW. Calculate the amount of 235U being consumed every second. Average released per fission is 200 MeV.
Calculate the energy that can be obtained from 1 kg of water through the fusion reaction 2H + 2H → 3H + p. Assume that 1.5 × 10−2% of natural water is heavy water D2O (by number of molecules) and all the deuterium is used for fusion.
(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)
A town has a population of 1 million. The average electric power needed per person is 300 W. A reactor is to be designed to supply power to this town. The efficiency with which thermal power is converted into electric power is aimed at 25%. (a) Assuming 200 MeV to thermal energy to come from each fission event on an average, find the number of events that should take place every day. (b) Assuming the fission to take place largely through 235U, at what rate will the amount of 235U decrease? Express your answer in kg per day. (c) Assuming that uranium enriched to 3% in 235U will be used, how much uranium is needed per month (30 days)?
Which particle is most likely to be captured by a 235u nucleus and cause it to undergo fission?