हिंदी

A Heavy Nucleus X of Mass Number 240 and Binding Energy per Nucleon 7.6 Mev is Split into Two Fragments Y and Z of Mass Numbers 110 and 130. the Binding Energy of Nucleons in Y and Z is 8.5 Mev per - Physics

Advertisements
Advertisements

प्रश्न

A heavy nucleus X of mass number 240 and binding energy per nucleon 7.6 MeV is split into two fragments Y and Z of mass numbers 110 and 130. The binding energy of nucleons in Y and Z is 8.5 MeV per nucleon. Calculate the energy Q released per fission in MeV.

उत्तर

Total energy of nucleus X = 240 × 7.6 = 1824 MeV

Total energy of nucleus Y = 110 × 8.5 = 935 MeV

Total energy of nucleus Z = 130 × 8.5 = 1105 MeV

Therefore, energy released from fission, Q = 935 + 1105 − 1824 = 216 MeV

shaalaa.com
Mass-energy and Nuclear Binding Energy - Mass - Energy
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2009-2010 (March) Delhi set 3

संबंधित प्रश्न

 In a typical nuclear reaction, e.g.

`"_1^2H+"_1^2H ->"_2^3He + n + 3.27 \text { MeV },`

although number of nucleons is conserved, yet energy is released. How? Explain.


Draw the plot of binding energy per nucleon (BE/A) as a functino of mass number A. Write two important conclusions that can be drawn regarding the nature of nuclear force.


Using the curve for the binding energy per nucleon as a function of mass number A, state clearly how the release in energy in the processes of nuclear fission and nuclear fusion can be explained.


Suppose we have 12 protons and 12 neutrons. We can assemble them to form either a 24Mg nucleus or two 12C nuclei. In which of the two cases more energy will be liberated?


The mass number of a nucleus is equal to


As the mass number A increases, the binding energy per nucleon in a nucleus


Which of the following is a wrong description of binding energy of a nucleus?


For nuclei with A > 100,
(a) the binding energy of the nucleus decreases on an average as A increases
(b) the binding energy per nucleon decreases on an average as A increases
(c) if the nucleus breaks into two roughly equal parts, energy is released
(d) if two nuclei fuse to form a bigger nucleus, energy is released.


(a) Calculate the energy released if 238U emits an α-particle. (b) Calculate the energy to be supplied to 238U it two protons and two neutrons are to be emitted one by one. The atomic masses of 238U, 234Th and 4He are 238.0508 u, 234.04363 u and 4.00260 u respectively.

(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)


A nucleus of mass M emits a γ-ray photon of frequency 'v'. The loss of internal energy by the nucleus is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×