हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Non-ideal Battery is Connected to a Resistor. is Work Done by the Battery Equal to the Thermal Energy Developed in the Resistor? Will Your Answer Change If the Battery is Ideal? - Physics

Advertisements
Advertisements

प्रश्न

A non-ideal battery is connected to a resistor. Is work done by the battery equal to the thermal energy developed in the resistor? Will your answer change if the battery is ideal?

टिप्पणी लिखिए

उत्तर

No, the work done by a non-ideal battery is not equal to the thermal energy developed in the resistor, as energy is spent to overcome the internal resistance of the battery and the resistance of the wire that connects the circuit elements/resistor to the battery. However, the resistance of the wire is generally negligible.

Yes, the answer will change if the battery is ideal. An ideal battery has no internal resistance. Hence, the work done by an ideal battery will be equal to the thermal energy developed in the resistor, assuming that the resistance of the wires used for connection is negligible.

shaalaa.com
Temperature Dependence of Resistance
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Electric Current in Conductors - Short Answers [पृष्ठ १९६]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 10 Electric Current in Conductors
Short Answers | Q 12 | पृष्ठ १९६

संबंधित प्रश्न

At room temperature (27.0°C) the resistance of a heating element is 100 Ω. What is the temperature of the element if the resistance is found to be 117 Ω, given that the temperature coefficient of the material of the resistor is 1.70 × 10−4 °C−1.


Show variation of resistivity of Si with temperature in a graph ?


Is work done by a battery always equal to the thermal energy developed in electrical circuit? What happens if a capacitor is connected in the circuit?


As the temperature of a metallic resistor is increased, the product of its resistivity and conductivity ____________ .


When a current passes through a resistor, its temperature increases. Is it an adiabatic process?


The constants a and b for the pair silver-lead are 2.50 μV°C−1 and 0.012μV°C−2, respectively. For a silver-lead thermocouple with colder junction at 0°C, ______________ .

(a) there will be no neutral temperature
(b) there will be no inversion temperature
(c) there will not be any thermo-emf even if the junctions are kept at different temperatures
(d) there will be no current in the thermocouple even if the junctions are kept at different temperatures


An electric kettle used to prepare tea, takes 2 minutes to boil 4 cups of water (1 cup contains 200 cc of water) if the room temperature is 25°C. (a) If the cost of power consumption is Re 1.00 per unit (1 unit = 1000 watt-hour), calculate the cost of boiling 4 cups of water. (b) What will be the corresponding cost if the room temperature drops to 5°C?


The 2.0 Ω resistor shown in the figure is dipped into a calorimeter containing water. The heat capacity of the calorimeter together with water is 2000 J K−1. (a) If the circuit is active for 15 minutes, what would be the rise in the temperature of the water? (b) Suppose the 6.0 Ω resistor gets burnt. What would be the rise in the temperature of the water in the next 15 minutes?


Find the thermo-emf developed in a copper-silver thermocouple when the junctions are kept at 0°C and 40°C. Use the data given in the following table.

Metal with lead (Pb)

a

`mu V"/"^oC`

b

`muV"/("^oC)`

Aluminium -0.47 0.003
Bismuth -43.7 -0.47
Copper 2.76 0.012
Gold 2.90 0.0093
Iron 16.6 -0.030
Nickel 19.1 -0.030
Platinum -1.79 -0.035
Silver 2.50 0.012
Steel 10.8 -0.016

A variable resistor R is connected across a cell of emf ε and internal resistance r as shown in the figure. Draw a plot showing the variation of
(i) Terminal voltage V and
(ii) the current I, as a function of R.


An electrical cable of copper has just one wire of radius 9 mm. Its resistance is 5 ohm. This single copper wire of the cable is replaced by 6 different well insulated copper wires each of radius 3 mm. The total resistance of the cable will now be equal to ______.


In the absence of an electric field, the mean velocity of free electrons in a conductor at absolute temperature (T) is ______.

By increasing the temperature, the specific resistance of a conductor and a semiconductor -


The higher and lower fixed points on a thermometer are separated by 160 mm. When the length of the mercury thread above the lower point is 40 mm, the temperature reading would be :


Temperature dependence of resistivity ρ(T) of semiconductors, insulators and metals is significantly based on the following factors:

  1. number of charge carriers can change with temperature T.
  2. time interval between two successive collisions can depend on T.
  3. length of material can be a function of T.
  4. mass of carriers is a function of T.

The temperature (T) dependence of resistivity of materials A and material B is represented by fig (i) and fig (ii) respectively. Identify material A and material B.


fig. (i)

fig. (ii)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×