हिंदी

A plane left 30 minutes later than the schedule time and in order to reach its destination 1500 km away in time, it has to increase its speed by 250 km/hr from its usual speed. Find its usual speed. - Mathematics

Advertisements
Advertisements

प्रश्न

A plane left 30 minutes later than the schedule time and in order to reach its destination 1500 km away in time, it has to increase its speed by 250 km/hr from its usual speed. Find its usual speed.

योग

उत्तर

Let the usual speed of plane be x km/hr

Total distance = 1500 km

From the given information, we have

`1500/x - 1500/(x + 250) = 30/60 = 1/2`

`(1500x + 1500 xx 250 - 1500x)/(x(x + 250)) = 1/2`

`(375000)/(x^2 + 250x) = 1/2`

x2 + 250x = 750000

x2 + 250x – 750000 = 0

x2 + 1000x – 750x – 750000 = 0

x(x + 1000) – 750(x + 1000) = 0

(x + 1000)(x – 750) = 0

x = –1000, 750

Since, speed cannot be negative.

So, x = 750.

Hence, the usual speed of plane is 750 km/hr.

shaalaa.com
Problems Based on Distance, Speed and Time
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Solving (simple) Problems (Based on Quadratic Equations) - Exercise 6 (E) [पृष्ठ ७९]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 6 Solving (simple) Problems (Based on Quadratic Equations)
Exercise 6 (E) | Q 6 | पृष्ठ ७९

संबंधित प्रश्न

If the speed of a car is increased by 10 km per hr, it takes 18 minutes less to cover a distance of 36 km. Find the speed of the car.


A goods train leaves a station at 6 p.m., followed by an express train which leaved at 8 p.m. and travels 20 km/hour faster than the goods train. The express train arrives at a station, 1040 km away, 36 minutes before the goods train. Assuming that the speeds of both the train remain constant between the two stations; calculate their speeds.


Two trains leave a railway station at the same time. The first train travels due west and the second train due north. The first train travels 5 km/hr faster than the second train. If after 2 hours, they are 50 km apart, find the speed of each train.


A bus covers a distance of 240 km at a uniform speed. Due to heavy rain its speed gets reduced by 10 km/h and as such it takes two hrs longer to cover the total distance. Assuming the uniform speed to be 'x' km/h, form an equation and solve it to evaluate 'x'.


An aeroplane travelled a distance of 400 km at an average speed of x km/hr. On the return journey, the speed was increased by 40 km/hr. Write down an expression for the time taken for:

  1. the onward journey;
  2. the return journey.

If the return journey took 30 minutes less than the onward journey, write down an equation in x and find its value.


A man covers a distance of 100 km, travelling with a uniform speed of x km/hr. Had the speed been 5 km/hr more it would have taken 1 hour less. Find x the original speed.


A car travels a distance of 72 km at a certain average speed of x km per hour and then travels a distance of 81 km at an average speed of 6 km per hour more than its original average speed. If it takes 3 hours to complete the total journey then form a quadratic equation and solve it to find its original average speed.


The speed of a boat is 32 km/h. If the speed of stream is 8 km/h, the speed of boat upstream is ______.


The speed of train A is x km/h and speed of train B is (x – 5) km/h. How much time will each train take to cover 400 km?


The speed of a boat in still water is 15 km/h and speed of stream is 5 km/h. The boat goes x km downstream and then returns back to the point of start is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×